Math, asked by mahek77777, 7 months ago

solve the equation:-
Pleaseeeeee
3t+1/16-2t-3/7=t+3/8+3t-1/14​

Answers

Answered by 2602alpha
3

Answer:

3t+1)/16-(2t-3)/7=(t+3)/8+(3t-1)/14

lcm of 16,7,8 and 14 is=112

multiply each term by 112

(3t+1)/16*112-(2t-3)7*112=(t+3)/8*112+(3t-1)/14*112

(3t+1)*7-(2t-3)16=(t+3)*14+(3t-1)*8

21t+7-32t+48=14t+42+24t-8

21t-32t-14t-24t=42-8-7-48

21t-70t=42-63

-49t=-21

t=21/49

Step-by-step explanation:

Answered by MaIeficent
6

Step-by-step explanation:

Given:-

  • \sf \dfrac{3t + 1}{16}  -  \dfrac{2t - 3}{7}  =  \dfrac{t + 3}{8}  +  \dfrac{3t - 1}{14}

To Find:-

  • The value of t

Solution:-

\sf \dfrac{3t + 1}{16}  -  \dfrac{2t - 3}{7}  =  \dfrac{t + 3}{8}  +  \dfrac{3t - 1}{14}

\sf \implies \dfrac{7(3t + 1) - 16(2t - 3)}{112}   =  \dfrac{14(t + 3) + 8(3t - 1)}{112}

\sf \implies 21t + 7 - 32t + 48   =  14t + 42 + 24t - 8

\sf \implies 21t - 32t + 48 + 7 =  14t + 24t +42  - 8

\sf \implies - 11t  + 55  = 38t + 34

\sf \implies 38t + 11t = 55 - 34

\sf \implies 49t = 21

\sf \implies t = \dfrac{21}{49}

\sf \implies t = \dfrac{3}{7}

\longrightarrow \underline{\boxed{\sf \therefore t = \frac{3}{7}}}

Similar questions