Math, asked by PragyaTbia, 1 year ago

Solve the equation: sin x + √3cos x = √2

Answers

Answered by hukam0685
0
To solve the given equation

sin x + √3cos x = √2

Multiply both side by 1/2

 \frac{1}{2} \: sin \: x + \frac{ \sqrt{3} }{2} \: cos \: x = \frac{ \sqrt{2} }{2} \\ \\
as we know that
sin \: 30° = \frac{1}{2} \\ \\ cos \: 30° = \frac{ \sqrt{3} }{2} \\ \\
so

 sin \: 30°\: sin \: x + cos \: 30° \: cos \: x = \frac{ 1}{ \sqrt{2} } \\ \\

As we know that

cos \: (A - B) = sin \: A \: \: sin \: B + cos \: A \: cos \: B \\ \\
so
cos \: (30° - x) = sin \: 30° \: \: sin \: x + cos \: 30° \: cos \: x \\ \\ cos \: (30° - x) = \frac{1}{ \sqrt{2} } \\ \\ 30° - x = {cos}^{ - 1} ( \frac{1}{ \sqrt{2} } ) \\ \\ 30° - x = {cos}^{ - 1}(cos \: 45°) \\ \\ 30° - x = 45 \\ \\ x = -15° \\ \\
Similar questions