Math, asked by sumanthgaddala42, 2 months ago

solve the equation tan theta + root 2 secant theta is equal to 1​

Answers

Answered by chetrymahesh34
0

Answer:

Answer:

\theta=2n\pi-\frac{\pi}{4}θ=2nπ−

4

π

Step-by-step explanation:

Given : Expression \sqrt 2\sec\theta+\tan \theta=1

2

secθ+tanθ=1

To find : Solve the expression ?

Solution :

Expression \sqrt 2\sec\theta+\tan \theta=1

2

secθ+tanθ=1

\sqrt 2\sec\theta=1-\tan \theta

2

secθ=1−tanθ

Squaring both side,

(\sqrt 2\sec\theta)^2=(1-\tan \theta)^2(

2

secθ)

2

=(1−tanθ)

2

2\sec^2\theta=(1-\tan \theta)^22sec

2

θ=(1−tanθ)

2

We know, \sec^2\theta=1+\tan^2\thetasec

2

θ=1+tan

2

θ

2+2\tan^2\theta=1+\tan^2\theta-2\tan\theta2+2tan

2

θ=1+tan

2

θ−2tanθ

\tan^2\theta+2\tan\theta+1=0tan

2

θ+2tanθ+1=0

(\tan\theta+1)^2=0(tanθ+1)

2

=0

Squaring both side,

\tan\theta+1=0tanθ+1=0

\tan\theta=-1tanθ=−1

\tan\theta=\tan (2n\pi-\frac{\pi}{4})tanθ=tan(2nπ−

4

π

)

\theta=2n\pi-\frac{\pi}{4}θ=2nπ−

4

π

Therefore, \theta=2n\pi-\frac{\pi}{4}θ=2nπ−

4

π

Similar questions