Math, asked by radha3145, 1 year ago

Solve the equation
 \frac{4x - 3}{2x + 3}  =  \frac{5}{7}

Answers

Answered by Anonymous
5

Hope it's Helpful for you.....☺☺

Attachments:
Answered by Anonymous
26

\mathfrak{\underline{\underline{\large{Solution:-}}}}

Multiplying both sides of the above equation by (2x + 3 ), we get,

 \frac{4x - 3}{2x + 3}  \times (2x + 3) =  \frac{5}{7}  \times (2x + 3)

 =  > 4x - 3 =  \frac{5}{7} (2x + 3)

\sf{\red{The \:denominator \:of\: R.H.S \:is \:7,}}

4x - 3 =  \frac{5}{7} (2x + 3)

4x - 3 =  \frac{10}{7} x -  \frac{15}{7}

 =  > 4x -  \frac{10}{7} x =  \frac{15}{7}  + 3

 =  >  \frac{28x  - 10x}{7}  =  \frac{15 + 21}{7}

 =  >  \frac{18}{7} x =  \frac{36}{7}

 =  > x =  \frac{36}{7}  \times  \frac{7}{18}  = 2

\mathfrak{\underline{\underline{\large{Verification:-}}}}

\sf{\orange{Put\: x = 2 in\: L.H.S \:of\: the \:equation}}

L.H.S.

 \frac{4x - 3}{2x + 3}  =  \frac{4 \times 2 - 3}{2 \times 2 + 3}  =  \frac{8 - 3}{4 + 3}  =  \frac{5}{7}

\sf{\purlle{Hence,\: x = 2 is\: the\: solution.}}

\bold{\underline{\underline{\large{Note:-}}}}

\sf{\green{The \:equation  \frac{4x - 3}{2x + 3}  =  \frac{5}{7} can \:be\: written\: as: }}

 \frac{4x - 3}{2x + 3}  \times (2x + 3) \times 7 =  \frac{5}{7}  \times (2x + 3) \times 7

or

7(4x - 3) = 5(2x + 3)

Now, the given equation is reduced to the form of linear equation in one variable.

Similar questions