Math, asked by kritika001, 4 months ago

solve the equation
x \sqrt{1 + y}  + y \sqrt{1 + x}  = 0 \: and \: x \: not \: equal \: to \: y \:  \:  \\ then \: prove  \: that \:  \frac{dy}{dx}  =  \frac{1}{ {x + 1}^ 2}

Answers

Answered by Seafairy
126

{\large{\textsf{\underline{\underline{Given :}}}}}

x\sqrt{1+y} +y\sqrt{1+x} =0

{\large{\underline{\underline{\textsf{To Prove :}}}}}

\frac{dy}{dx}=\frac{1}{(x+1)^2}

{\large{\textsf{\underline{\underline{Solution :}}}}}

\implies x\sqrt{1+y} + y\sqrt{1+x}=0

\implies x\sqrt{1+y}=-y\sqrt{1+x}

\text{Squaring on both sides}

\implies x^2(1+y)=-y^2(1+x)

\implies x^2+x^2y=y^2+xy^2

\implies x^2-y^2=xy^2-x^2y

\implies (x+y)(x-y) = -xy(x+y)

\implies (x-y) = -xy\implies x-y+xy=0

\implies x+y(1+x)=0\implies y(1+x)=-x

\implies y=\frac{-x}{(x+1)^2}

\implies \frac{dy}{dx}=\frac{(1+x)(-1)-(-x)(1)}{(1+x)^2}

\implies \frac{-1-x-(-x)}{(1+x)^2} \implies \frac{-1+x-x}{(1+x)^2}

\implies {\bf {\frac{-1}{(1+x)^2}}}

\text{Hence Proved}

Similar questions