Math, asked by ajaypattilofficiall, 4 months ago

Solve the equation x^2

-3x-4=0 by using the formula​

Answers

Answered by CuteAnswerer
3

GIVEN :

  • \bf {x^2-3x-4=0}

TO FIND :

  • The roots.

SOLUTION :

Let the roots are α and β.

Here ,

  • a = 1

  • b = -3

  • c = -4

Finding α :

\longrightarrow\bf \alpha={\dfrac {-b+\sqrt {b^2-4ac}}{2a}} \\ \\

\longrightarrow\sf \alpha = \dfrac { - ( - 3)+\sqrt{(-3)^2 - 4 \times 1 \times( - 4) }}{2 \times 1} \\ \\

\longrightarrow\sf \alpha = \dfrac {3 +\sqrt {9  + 16}}{2} \\ \\

\longrightarrow\sf \alpha = \dfrac {3+\sqrt {25}}{2} \\ \\

\longrightarrow\sf \alpha = \dfrac {3+5}{2} \\ \\

\longrightarrow\sf \alpha = \cancel{\dfrac {8}{2}} \\ \\

\longrightarrow \underline{ \huge{ \boxed{\boxed{ \bf{ \green{\alpha = 4}}}}}}

Finding β :

\longrightarrow\bf \beta={\dfrac {-b-\sqrt {b^2-4ac}}{2a}} \\ \\

\longrightarrow\sf \beta = \dfrac { - ( - 3)-\sqrt{(-3)^2 - 4 \times 1 \times( - 4) }}{2 \times 1} \\ \\

\longrightarrow\sf \beta = \dfrac {3 -\sqrt {9  + 16}}{2} \\ \\

\longrightarrow\sf \beta = \dfrac {3-\sqrt {25}}{2} \\ \\

\longrightarrow\sf \beta = \dfrac {3-5}{2} \\ \\

\longrightarrow\sf \beta= \cancel{\dfrac {-2}{2}} \\ \\

\longrightarrow \underline{ \huge{ \boxed{\boxed{ \bf{ \green{\beta = -1}}}}}}

Similar questions