Math, asked by jaskaransinghkw121, 6 months ago

solve the equation (x+6)/(3x+2)=(x+9)/(3x-1)​

Answers

Answered by Anonymous
1

Solution:-

 \rm \to \:  \dfrac{(x + 6)}{(3x + 2)}  =  \dfrac{(x + 9)}{(3x- 1)}

Now using cross multiplication methods

  \rm \to \: (x + 6)(3x - 1) = (x + 9)(3x + 2)

Now multiply

 \rm \to \: 3 {x}^{2}  - x + 18x - 6 = 3 {x}^{2}  + 2x + 27x + 18

\rm \to \:  \cancel{3 {x}^{2}}  - x + 18x - 6 =  \cancel{3 {x}^{2} } + 2x + 27x + 18

\rm \to \:   - x + 18x - 6 =  2x + 27x + 18

 \rm \to \:  - x - 2x + 18x - 27x - 6 - 18 = 0

 \rm \to \:  - 3x - 9x - 24 = 0

 \rm \to \:   - 12x = 24

 \rm \to \:  x =  - \dfrac{24}{12}

 \rm \to \: x =  - 2

Now check the answer

 \rm \to \:  \dfrac{(x + 6)}{(3x + 2)}  =  \dfrac{(x + 9)}{(3x- 1)}

Put the value of x = -2

  \rm \to \:  \dfrac{( - 2+ 6)}{(3 \times  - 2 + 2)}  =  \dfrac{( - 2+ 9)}{(3 \times  - 2- 1)}

 \rm \to \:  \dfrac{4}{ - 6 + 2}  =  \dfrac{7}{ - 6 - 1}

 \rm \to \:  \dfrac{4}{ - 4}  =  \dfrac{7}{ - 7}

 \rm \to \:  - 1 =  - 1

LHS = RHS

Answered by yogesharma1977
0

Step-by-step explanation:

hope you satisfied

mark as brainlist

follow for more solutions

subscribe maths DIVINITY on youtube

Attachments:
Similar questions