Math, asked by jaydevb, 3 months ago

Solve the Equation :

x²+ 3x + 5 = 0 and find it's roots ​

Answers

Answered by kvarun59045
1

Answer:

a =1 b =3 and c =5

b2-4ac

(3)2-4×1×5

9-20

-11 ans

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {x}^{2}  + 3x + 5 = 0

\large\underline{\sf{To\:Find - }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \: The \: value \: of \: x

\large\underline{\sf{Solution-}}

The given Quadratic Equation,

\rm :\longmapsto\: {x}^{2}  + 3x + 5 = 0

\rm :\longmapsto\:On \:  comparing \: with \:  {ax}^{2}  + bx + c = 0 \: \: we \: get

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \: a = 1

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \: b = 3

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \: c = 5

We have to first find Discriminant (D) of above equation.

So, Discriminant is given by

\rm :\longmapsto\:Discriminant (D) =  {b}^{2}  - 4ac

\rm :\longmapsto\:Discriminant (D) =  {(3)}^{2}  - 4 \times 5 \times 1

\rm :\longmapsto\:Discriminant (D) = 9 - 20

\rm :\longmapsto\:Discriminant (D) =  - 11

\bf\implies \:The \:  {eq}^{n}  \: has \: non - real \: roots \: given \: by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{D} }{2a}

\rm :\longmapsto\:x \:  =  \: \dfrac{ - 3 \:  \:  \pm \:  \sqrt{ - 11} }{2 \times 1}

\rm :\longmapsto\:x \:  =  \: \dfrac{ - 3 \:  \:  \pm \: i  \: \sqrt{ 11} }{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions