Math, asked by akshat160, 1 year ago

solve the equation |Z+1| = Z+2(1+i)

Answers

Answered by himanshutiwari2
1
|z+1|=|x+iy+1|=|x+1+iy|=(x+1)^2+1=x^2+1+2x+1
=x^2+2x+2
z+2(1+i)=x+iy+2+2i=x+2+i(y+2)
so
x^2+x=i(y+2)
now try to solve next by yourself frnd.
pls mark it as brainiest if it helped
Answered by Anonymous
15

AnswEr:

Let z = x + i y . Then, z + 1 = (x+1) +iy

____________________

 \therefore \: </p><p>\blue{\boxed{\underline{\pink{\sf{ |z + 1| =   \sqrt{ {(x + 1)}^{2}  +  {y}^{2} }  }}}}}

____________________

Now, |z+1| = z + 2 (1+i)

 \implies \tt \sqrt{ {(x + 1)}^{2} +  {y}^{2}  }  = (x + iy) + 2(1 + i) \\  \\  \implies \tt \:  \sqrt{ {(x + 1)}^{2}  +  {y}^{2} }  + 0i = (x + 2) \\  +  \tt(y + 2)i \\  \\  \implies \tt \:  \sqrt{ {(x + 1)}^{2}  +  {y}^{2}  }  = x  + 2 \:  \: and \:  \: y + 2 = 0 \\  \\  \implies \tt \:  {(x + 1)}^{2}  +  {y}^{2}  =  {(x + 2)}^{2}  \:  \: and \:  \: y =  - 2 \\  \\  \implies \tt \:  {y}^{2}  = 2x + 3 \:  \:  \: and \:  \:  \: y =  - 2 \\  \\  \implies \tt \: x =  \frac{1}{2}  \:  \:  \: and \:  \:  \: y =  - 2 \\  \\  \\ </p><p></p><p>\green{\boxed{\pink{\underline{\red{\mathrm{hence \:  \: z =  \frac{1}{2} - 2i }}}}}} \\

Similar questions