Math, asked by student80979, 1 year ago

Solve the equation

z² +|z| = 0,
Where z is a complex number .​

Answers

Answered by hukam0685
1

Step-by-step explanation:

As we know that complex number is represented by

z = a + ib \\  \\  |z|  =  \sqrt{ {a}^{2} +  {b}^{2}  }  \\  \\

now put these values to the equation

 {z}^{2}  +  |z|  = 0 \\  \\  {(a + ib)}^{2}  +  \sqrt{ {a}^{2} +  {b}^{2}  }  = 0 \\  \\  {a}^{2}  + 2iab -  {b}^{2}  +  \sqrt{ {a}^{2} +  {b}^{2}  }  = 0 + 0i \\  \\  {a}^{2}  -  {b}^{2}  +  \sqrt{ {a}^{2}  +  {b}^{2} }  + 2iab = 0 + 0i \\  \\ compare \: real \: and \: imaginary \: terms \\  \\  {a}^{2}  -  {b}^{2}  +  \sqrt{ {a}^{2}  +  {b}^{2} } = 0 \\  \\ 2ab = 0 \\  \\

Now we can assume value of a=0

 {0}^{2}  -  {b}^{2}  +  \sqrt{ {0}^{2}  +  {b}^{2} } = 0 \\  \\  -  {b}^{2}  + b = 0 \\  \\ b( - b + 1) = 0 \\  \\ b = 0 \\  \\ b = 1 \\  \\ put \: the \: value \: of \:b  \: in \:equations \:  \\  \\ 2ab = 0 \\  \\ =  >  a = 0 \: when \: b \:  = 0 \\  \\

put b=0

 {a}^{2}  -  {0}^{2}  +  \sqrt{ {a}^{2}  +  {0}^{2} } = 0 \\  \\  {a}^{2}  + a = 0 \\  \\ a(a + 1) = 0 \\  \\ a = 0 \\  \\ a =  - 1 \\  \\

Hence Solution of given equation are

(0 + 0i) \\  \\ (0 + i) \\  \\ (0 - i) \\  \\

Hope it helps you.

Similar questions