Solve the equations by completing the square
(i) x² − 10x + 9 = 0 (ii) x² − 5x + 5= 0 (iii) x² + 7x − 6 = 0
Answers
Answered by
7
Here is your solution
Attachments:
Answered by
22
Solution:
i ) x² - 10x + 9 = 0
=> x² - 10x = -9
=> x² - 2.x.5 = -9
=> x² - 2.x.5 + 5² = 5² - 9
=> ( x - 5 )² = 16
=> x - 5 = ± √16
=> x - 5 = ± 4
=> x = 5 ± 4
=> x = 5 + 4 or x = 5 - 4
x = 9 or x = 1
ii ) x² - 5x + 5 = 0
=> x² - 5x = -5
=> x² - 2.x.(5/2) = -5
=> x² - 2.x.(5/2) + (5/2)² = (5/2)² - 5
=> ( x - 5/2 )² = 25/4 - 5/1
=> ( x - 5/2 )² = ( 25 - 20 )/4
=> ( x - 5/2 )² = 5/4
=> x - 5/2 = ± √(5/4)
=> x - 5/2 = ± √5/2
=> x = 5/2 ± √5/2
=> x = ( 5 ± √5 )/2
Therefore,
x = ( 5 + √5 )/2 or x = ( 5 - √5 )/2
iii ) x² + 7x - 6 = 0
=> x² + 7x = 6
=> x² + 2.x.(7/2) = 6
=> x² + 2.x.(7/2)+(7/2)² = (7/2)² + 6
=> ( x + 7/2 )² = 49/4 + 6/1
=> ( x + 7/2 )² = ( 49 + 24 )/4
=> ( x + 7/2 )² = 73/4
=> x + 7/2 = ± √(73/4 )
=> x = -7/2 ± √73/2
=> x = ( -7 ± √73 )/2
Therefore ,
x = ( -7+√73)/2 or x = ( -7-√73)/2
••••
i ) x² - 10x + 9 = 0
=> x² - 10x = -9
=> x² - 2.x.5 = -9
=> x² - 2.x.5 + 5² = 5² - 9
=> ( x - 5 )² = 16
=> x - 5 = ± √16
=> x - 5 = ± 4
=> x = 5 ± 4
=> x = 5 + 4 or x = 5 - 4
x = 9 or x = 1
ii ) x² - 5x + 5 = 0
=> x² - 5x = -5
=> x² - 2.x.(5/2) = -5
=> x² - 2.x.(5/2) + (5/2)² = (5/2)² - 5
=> ( x - 5/2 )² = 25/4 - 5/1
=> ( x - 5/2 )² = ( 25 - 20 )/4
=> ( x - 5/2 )² = 5/4
=> x - 5/2 = ± √(5/4)
=> x - 5/2 = ± √5/2
=> x = 5/2 ± √5/2
=> x = ( 5 ± √5 )/2
Therefore,
x = ( 5 + √5 )/2 or x = ( 5 - √5 )/2
iii ) x² + 7x - 6 = 0
=> x² + 7x = 6
=> x² + 2.x.(7/2) = 6
=> x² + 2.x.(7/2)+(7/2)² = (7/2)² + 6
=> ( x + 7/2 )² = 49/4 + 6/1
=> ( x + 7/2 )² = ( 49 + 24 )/4
=> ( x + 7/2 )² = 73/4
=> x + 7/2 = ± √(73/4 )
=> x = -7/2 ± √73/2
=> x = ( -7 ± √73 )/2
Therefore ,
x = ( -7+√73)/2 or x = ( -7-√73)/2
••••
Similar questions