Math, asked by guptaananya2005, 10 days ago

Solve the equations
 \sf \:  \sqrt{ {x}^{2} + 12y }  +  \sqrt{ {y}^{2}  + 12x}  = 33

and

 \sf \: x + y = 23

Spammers please far away.

Brainly Mods, Brainly stars or best user or genius. Please answer.

Don't co py and pa ste from Bro wser!!!!​

Answers

Answered by Anonymous
5

Given :-

  •  \sf \: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} = 33

  • \sf x + y = 23

To find :-

  • Value of a and b

Solution :-

 \sf \implies\: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} = 33

 \sf \implies\: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} =10 + 23

 \sf \implies\: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} =10 + (x + y)

Squaring both sides

 \sf \implies\:( \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x})^{2}  =(10 + x + y)^{2}

Apply identity :-

  • \tt(A + B)^2 = A^2 + B^2+ 2AB

  • \tt(A+B+C)^2 = A^2 +B^2 + C^2+ 2AB + 2BC + 2CA

we get . . .

\sf \implies\: {x}^{2}  + 12y +  {y}^{2}  + 12x + 2 \Big( \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }\Big)=x^2+y^2+100+2xy+20y+20x

\sf \implies\: 2 \Big( \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }\Big)=x^2+y^2+100+2xy+20y+20x  -  {x}^{2}   -  {y}^{2}  - 12y - 12x

\sf \implies\: 2 \Big( \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }\Big) = 8x + 8y + 100 + 2xy

\sf \implies\: 2 \Big( \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }\Big) = 8(x + y) + 100 + 2xy

Divide 2 both sides

\sf \implies\:  \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }= 4(x + y) + 50 + xy

Substitute value of x+y=23

\sf \implies\:  \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }= 4(23) + 50 + xy

\sf \implies\:  \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }= 92 + 50 + xy

\sf \implies\:  \sqrt{( {x}^{2} + 12y)( {y}^{2}  + 12x) }= 142 + xy

Again squaring both sides

\sf \implies\:  ( {x}^{2} + 12y)( {y}^{2}  + 12x)= (142+ xy)^{2}

Apply identity :-

  • \tt (A+B)^2=A^2+2AB+B^2

\sf \implies\:   {x}^{2}  {y}^{2}  + 12 {x}^{3}  + 12 {y}^{3} + 144xy = {x}^{2}  {y}^{2}  + 20164 + 284xy

\sf \implies\:   12 {x}^{3}  + 12 {y}^{3} + 144xy   - 284xy- 20164 = 0

\sf \implies\:   12 {x}^{3}  + 12 {y}^{3}  - 140xy- 20164 = 0

Divide whole equation by 12

\sf \implies\:   {x}^{3}  + {y}^{3}  -  \dfrac{35}{3} xy- \dfrac{5041}{3} = 0

We know that :-

  • \tt(A+B)^3 = A^3 + B^3 + 3AB (A+B)

We derived a new equation from this :-

  •  \tt A^3 + B^3 = (A+B)^3 - 3AB(A+B)

Using this we get ::

\sf \implies\:    {\bf{(x + y)^{3} - 3xy(x + y) }}  -  \dfrac{35}{3} xy- \dfrac{5041}{3} = 0

Substitute value of ( x + y ) = 23

\sf \implies\: (23)^{3} - 3xy(23)-  \dfrac{35}{3} xy- \dfrac{5041}{3} = 0

\sf \implies\:12167 - 69xy-  \dfrac{35xy}{3}- \dfrac{5041}{3} = 0

\sf \implies  \:  \dfrac{36501 - 5041}{3}  - \dfrac{207xy - 35xy}{3} = 0

\sf \implies  \:  \dfrac{31460}{3}  - \dfrac{242xy}{3} = 0

\sf \implies  \:  \dfrac{31460}{3}   =  \dfrac{242xy}{3}

\sf \implies  \:  31460  =  242xy

\sf \implies  \:   \dfrac{ 31460}{242}  =  xy

\sf \implies\:   130 = xy

‎ ‎ ‎

Now we have :-

 \begin{cases} \tt \: x + y = 23 \\   \\  \tt  \: xy = 130 \end{cases}

By using hit and trial, we get :-

Either x = 13 and y = 10 OR x = 10 and y = 13.

This is the required result.

Similar questions