Math, asked by Sujal2847, 1 year ago

solve the following​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

 {sec}^{4} A(1 -  {sin}^{4} A) - 2 {tan}^{2} A = 1 \\ LHS =  {sec}^{4} A(1 -  {sin}^{4} A) - 2 {tan}^{2} A \\  =  {sec}^{4} A(1   -   {sin}^{2} A)(1  +  {sin}^{2} A) - 2 {tan}^{2} A \\ =  {sec}^{2} A \times {sec}^{2} A \times {cos}^{2}A(1  +  {sin}^{2} A) - 2 {tan}^{2} A \\  = {sec}^{2} A (1  +  {sin}^{2} A) - 2 {tan}^{2} A  \\  = {sec}^{2} A   +  {sec}^{2} A  {sin}^{2} A - 2 {tan}^{2} A  \\ =1 +  {tan}^{2} A   +  \frac{1}{ {cos}^{2} A}   {sin}^{2} A - 2 {tan}^{2} A  \\ =1 +  {tan}^{2} A   +  \frac{{sin}^{2} A}{ {cos}^{2} A}    - 2 {tan}^{2} A  \\ =1 +  {tan}^{2} A   +  {tan}^{2} A - 2 {tan}^{2} A  \\  = 1 + 2 {tan}^{2} - 2 {tan}^{2} \\  = 1 \\  = RHS \\ Thus \:  Proved \\

Pleased avoid viewing attachment as it has been wrongly attached.

Attachments:
Similar questions