Math, asked by Tejasfirange2, 3 months ago

Solve the following Activity​

Attachments:

Answers

Answered by VAMPlRE
22

Answer:

 \huge \sf \underbrace{ \: Proof \: }

 \sf \implies \angle \: EFG =  \angle \: FGH... \fbox {( \sf \green{ alternate \: angle)}}...1

 \sf \implies  \angle \: EFG \:  = \angle \fbox {\sf \green{ FGH}}...( \sf \: inscribed \: angle \: theorem)...2

 \sf \implies    \angle\fbox{  \green{ EFG }}  = \angle  {\sf { FGH}}...( \sf \: inscribed \: angle \: theorem)..3

 \sf \implies \therefore \: m(arcEG) \: ≅   \fbox{ \sf \green {m(arcFH)}}...(from \: 1,2,3)

 \sf \implies \therefore \: chord \: EG≅chord \: FH

 \sf ....corresponding \:chord \: of \: the \: congruent \:  arcs .

Answered by Casper608
4

Proof

\sf \implies \angle \: EFG = \angle \: FGH... \fbox {( \sf \green{ alternate \: angle)}}...1⟹∠EFG=∠FGH...

( alternate angle)

1

\sf \implies \angle \: EFG \: = \angle \fbox {\sf \green{ FGH}}...( \sf \: inscribed \: angle \: theorem)2⟹∠EFG=∠FGH

(inscribedangletheorem) 2

\sf \implies \angle\fbox{ \green{ EFG }} = \angle {\sf { FGH}}...( \sf \: inscribed \: angle \: theorem)..3⟹∠EFG

=∠FGH (inscribedangletheorem) 3

\sf \implies \therefore \: m(arcEG) \: ≅ \fbox{ \sf \green {m(arcFH)}}...(from \: 1,2,3)⟹∴m(arcEG)≅ </p><p> m(arcFH)

...(from1,2,3)

\sf \implies \therefore \: chord \: EG≅chord \: FH⟹∴chordEG≅chordFH</p><p>\sf ....corresponding \:chord \: of \: the \: congruent \:

 arcs \: corresponding \: chord \: of \: the \: congruentarcs

Similar questions