Math, asked by AhmadAbdullah1, 15 days ago

Solve the following differential equations given the initial value
dy/dx = tan [x], y[0] = 1

Answers

Answered by darshanradha3
15

Answer:

                 y(x) = - log(cosx) + 1

Step-by-step explanation:

Given:

             \frac{dy}{dx}  = tan (x)

             y = \int\ {tanx} \, dx

             y=\int\ {\frac{sinx}{cosx} } \, dx ------------> Equation1         (Because tanx=\frac{sinx}{cosx})

             Put   u = cosx

                     differentiate both side wrt x

                      \frac{du}{dx}=-sinx

                     - du = sinx dx

    Substitute -du in place of sinx dx and u = cosx in Equation 1

              y=\int\ {\frac{-du}{u} } \, dx

              y = - log(u) + C  (Because integration of 1/u is log(u))

               Now substitute u = cosx

            y(x) = - log(cosx) + C ---------------> Equation 2

            Given y(0) = 1

      Substitute x = 0 in Equation 2

         y(0) = -log(cos0) + C

              1 = -log(1) + C        (Because cos0 = 1)

              1 = 0 + C                (Because log(1)=0)

               C = 1

   From equation 1

                y(x) = - log(cosx) + C

                y(x) = - log(cosx) + 1

                                                    HOPE U UNDERSTOOD

                                                                THANK YOU :)

Answered by Manmohan04
11

Given,

\[\frac{{dy}}{{dx}} = \tan \left[ x \right],y\left[ 0 \right] = 1\]

Solution,

Know that,

\[\frac{{dy}}{{dx}} = \tan x\]

Integrate with respect to x.

\[y =  - \ln \left( {\cos x} \right) + c\]-------(1)

Where c is the constant.

Put initial value to get the value of constant.

\[\begin{array}{l}1 =  - \ln \left( {\cos 0} \right) + c\\ \Rightarrow 1 =  - \ln 1 + c\\ \Rightarrow 1 =  - 0 + c\\ \Rightarrow c = 1\end{array}\]

Put it in equation 1.

\[y =  - \ln \left( {\cos x} \right) + 1\]

Hence the solution of differential equation is \[y =  - \ln \left( {\cos x} \right) + 1\]

Similar questions