Solve the following equation:
(1/x)-(1/x-2)=3,x not equal to 0,2
Answers
Answered by
15
Answer:
Required values of x are ( 3 ± √3 ) / 3.
Step-by-step explanation:
= > - 2 = 3( x )( x - 2 )
= > - 2 = 3[ x^2 - 2x ]
= > - 2 = 3x^2 - 6x
= > 3x^2 - 6x + 2 = 0
= > ( √3 x ) ^2 - 2( √3 × √3 )x + 2 = 0
= > ( √3 x )^2 - 2( √3x × √3 ) + 3 + 2 - 3 = 0 { Adding & subtracting 3 }
= > ( √3 x )^2 - 2( √3x × √3 ) + ( √3 )^2 - 1 = 0
= > ( √3 x - √3 )^2 - 1 = 0 { Using a^2 + b^2 - 2ab = ( a - b )^2 }
= > ( √3 x - √3 )^2 = 1
= > √3 x - √3 = ± 1
= > √3 x = √3 ± 1
= > x = ( √3 ± 1 ) / √3
= > x = ( 3 ± √3 ) / 3
Hence the required values of x are ( 3 ± √3 ) / 3.
Similar questions