Math, asked by charanjotsingh240, 5 months ago

solve the following equation ​

Attachments:

Answers

Answered by BrainlyQueen01
101

Question: If x = m + 1, find the value of m from the equation \tt \dfrac{1}{2}(5x-6)- \dfrac{1}{3}(1+7x)= \dfrac{1}{2}

Answer:

\huge{\underline{\boxed{\red{\bf m=22}}}}

Step-by-step explanation:

Solving the above equation,

: \implies \tt \dfrac{1}{2}(5x-6)- \dfrac{1}{3}(1+7x)= \dfrac{1}{2}

: \implies \tt \dfrac{5x-6}{2} - \dfrac{1 +7x}{3} =\dfrac{1}{2}

Taking LCM of the denominators,

: \implies \tt \dfrac{3(5x-6)-2(1+7x)}{6}=\dfrac{1}{2}

: \implies \tt \dfrac{15x-18-2-14x}{6}=\dfrac{1}{2}

: \implies \tt \dfrac{x-20}{6}=\dfrac{1}{2}

On cross-multiplying,

: \implies \tt 2(x-20)=6

: \implies \tt x - 20 = \dfrac{6}{2}

: \implies \tt x - 20 = 3

: \implies \tt x = 3 + 20

\boxed{\bf \therefore x = 23}

Now, it is given that ;

: \implies \sf x = m + 1

: \implies \sf m = x - 1

: \implies \sf m = 23-1

\large{\underline{\boxed{\bf \therefore m = 22}}}

Hence, the value of m is 22.


MysterySoul: Great answer!
Answered by Anonymous
46

Given:-

  • \sf{x = m + 1}

  • \sf{\dfrac{1}{2}(5x - 6) - \dfrac{1}{3}(1 + 7x) = \dfrac{1}{2}}

To find:-

  • Value of m.

Solution:-

\large{\tt{\longmapsto{\dfrac{1}{2}(5x - 6) - \dfrac{1}{3}(1 + 7x) = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{1}{2} [5m + 5 - 6] - \dfrac{1}{3} [1 + 7(m + 1)] = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{1}{2} [5m + 5 - 6] - \dfrac{1}{3} [1 + 7m + 7)] = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{1}{2} [5m - 1] - \dfrac{1}{3} [7m + 8)] = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{5m - 1}{2} - \dfrac{7m + 8}{3} = \dfrac{1}{2}}}}

Taking LCM:-

\large{\tt{\longmapsto{\dfrac{3(5m - 1) - 2(7m + 8)}{6} = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{15m - 3 - 14m - 16}{6} = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{\dfrac{m - 19}{6} = \dfrac{1}{2}}}}

\large{\tt{\longmapsto{m - 9 = \dfrac{6}{2} = 3}}}

\large{\tt{\longmapsto{m = 3 + 19}}}

\boxed{\large{\tt{\longmapsto{\purple{m = 22}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions