Math, asked by as7009488, 7 months ago

solve the following equation: (2x+3)(2x+5)(x-1)(x-2)=30


solve please this question ​

Answers

Answered by mehtaishant
0

Answer:

Let us evaluate,

\displaystyle\sf{\longrightarrow I=\int\dfrac{1}{(2\sin x+\sec x)^4}\ dx}⟶I=∫

(2sinx+secx)

4

1

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{1}{\left(2\sin x+\dfrac{1}{\cos x}\right)^4}\ dx}⟶I=∫

(2sinx+

cosx

1

)

4

1

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\cos^4x}{\left(1+\sin(2x)\right)^4}\ dx}⟶I=∫

(1+sin(2x))

4

cos

4

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\cos^4x}{\left(\left(\sin x+\cos x\right)^2\right)^4}\ dx}⟶I=∫

((sinx+cosx)

2

)

4

cos

4

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\cos^4x}{\left(\sin x+\cos x\right)^8}\ dx}⟶I=∫

(sinx+cosx)

8

cos

4

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\dfrac{\cos^4x}{\cos^8x}}{\left(\dfrac{\sin x+\cos x}{\cos x}\right)^8}\ dx}⟶I=∫

(

cosx

sinx+cosx

)

8

cos

8

x

cos

4

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\sec^4x}{\left(1+\tan x\right)^8}\ dx}⟶I=∫

(1+tanx)

8

sec

4

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{\sec^2x\cdot\sec^2x}{\left(1+\tan x\right)^8}\ dx}⟶I=∫

(1+tanx)

8

sec

2

x⋅sec

2

x

dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{1+\tan^2x}{\left(1+\tan x\right)^8}\cdot\sec^2x\ dx}⟶I=∫

(1+tanx)

8

1+tan

2

x

⋅sec

2

x dx

\displaystyle\sf{\longrightarrow I=\int\dfrac{(1+\tan x)^2-2\tan x}{\left(1+\tan x\right)^8}\cdot\sec^2x\ dx}⟶I=∫

(1+tanx)

8

(1+tanx)

2

−2tanx

⋅sec

2

x dx

Substitute \sf{u=1+\tan x.}u=1+tanx.

\displaystyle\sf{\longrightarrow I=\int\dfrac{u^2-2(u-1)}{u^8}\ du}⟶I=∫

u

8

u

2

−2(u−1)

du

\displaystyle\sf{\longrightarrow I=\int\dfrac{u^2-2u+2}{u^8}\ du}⟶I=∫

u

8

u

2

−2u+2

du

\displaystyle\sf{\longrightarrow I=\int\dfrac{1}{u^6}\ du-2\int\dfrac{1}{u^7}\ du+2\int\dfrac{1}{u^8}\ du}⟶I=∫

u

6

1

du−2∫

u

7

1

du+2∫

u

8

1

du

\displaystyle\sf{\longrightarrow I=\dfrac{u^{-5}}{-5}-2\cdot\dfrac{u^{-6}}{-6}+2\cdot\dfrac{u^{-7}}{-7}+k}⟶I=

−5

u

−5

−2⋅

−6

u

−6

+2⋅

−7

u

−7

+k

Undoing the substitution,

\displaystyle\sf{\longrightarrow I=-\dfrac{1}{5}(1+\tan x)^{-5}+\dfrac{1}{3}(1+\tan x)^{-6}-\dfrac{2}{7}(1+\tan x)^{-7}+k\quad\quad\dots(1)}⟶I=−

5

1

(1+tanx)

−5

+

3

1

(1+tanx)

−6

7

2

(1+tanx)

−7

+k…(1)

But in the question it's given,

\displaystyle\sf{\longrightarrow I=A(1+\tan x)^{-5}+B(1+\tan x)^{-6}+C(1+\tan x)^{-7}+k\quad\quad\dots(2)}⟶I=A(1+tanx)

−5

+B(1+tanx)

−6

+C(1+tanx)

−7

+k…(2)

Comparing (1) and (2) we get,

\sf{A=-\dfrac{1}{5}}A=−

5

1

\sf{B=\dfrac{1}{3}}B=

3

1

\sf{C=-\dfrac{2}{7}}C=−

7

2

Therefore,

\sf{\longrightarrow A+B+C=-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{2}{7}}⟶A+B+C=−

5

1

+

3

1

7

2

\sf{\longrightarrow\underline{\underline{A+B+C=-\dfrac{16}{105}}}}⟶

A+B+C=−

105

16

Hence (D) is the answer

Answered by anamikahazarika1970
0

Step-by-step explanation:

( 4x² +10x+6x+15) (x²-2x-x+2)=30

4x²+16x+15) ( x²-3x+2)=30

4x⁴-12x³+8x²+16x³-48x²+32x+15x²-45x+30=30

x²(4x²-25)+4x³-13x+30=30

x²(4x²-25)+4x³-13x=0

4x²-25+4x³-13x=0

4x²+4x³-13x=25

x(4x+4x²-13)-25=0

4x+4x²-38=0

4x(1+x)-38=0

1+x-38=0

x-37=0

x=37

Similar questions