Math, asked by arvindkumar953299015, 3 months ago

solve the following equation​

Attachments:

Answers

Answered by keenjal
2

 \frac{ - 2x + 1}{3}  = 5 -  \frac{3(x + 4)}{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \frac{ - 2x + 1}{3}  +  \frac{3(x + 4)}{2}  = 5   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \frac{2( - 2x + 1) + 3 (3x + 12)}{3 \times 2}  = 5 \\  \\  \frac{ - 4x + 2 + 9x + 36}{6}  = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \frac{5x + 38}{6}  = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ 5x + 38 = 30  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ 5x = 30 - 38 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ x =  \frac{ - 8}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

I hope this will be help you

Answered by Flaunt
205

Question

 \sf \large \dfrac{ - 2x + 1}{3}  = 5 -  \dfrac{3(x + 4)}{2}

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{ - 2x + 1}{ 3}  = 5 -  \dfrac{3(x + 4)}{2}

\sf \longmapsto \dfrac{ - 2x + 1}{3}  =  \dfrac{10 - 3(x + 4)}{2}

\sf \longmapsto \dfrac{ - 2x + 1}{3}  =  \dfrac{10 - 3x - 12}{2}

\sf \longmapsto \dfrac{ - 2x + 1}{3}  =  \dfrac{ - 2 - 3x}{2}

Now,cross multiply to both sides:

\sf \longmapsto2( - 2x + 1) = 3( - 2 - 3x)

\sf \longmapsto - 4x + 2 =  - 6 -  9x

\sf \longmapsto - 4x + 9x =  - 6 - 2

\sf \longmapsto5x =  - 8

\sf \longmapsto \: x =  \dfrac{ - 8}{5}

 \sf \bold{x =  -  \dfrac{8}{5} }

Check

\sf \longmapsto2( - 2x + 1) = 3( - 2 - 3x)

Taking LHS

\sf \large\longmapsto2( - 2 \times  -  \frac{8}{5}  + 1)

\sf \large\longmapsto2( \frac{ 16}{5} + 1)

\sf\large \longmapsto2( \frac{16 + 5}{5} )

\sf\large \longmapsto2( \frac{21}{5} )

 \sf  =  \dfrac{42}{5}

Taking RHS

\sf\large \longmapsto3( - 2 - 3 \times  -  \frac{8}{5} )

\sf \large\longmapsto3( - 2 +  \frac{24}{5} )

\sf \large\longmapsto3( \frac{ - 10 + 24}{5} )

\sf\large \longmapsto3( \frac{14}{5} )

\sf  =  \dfrac{42}{5}

Since,LHS=RHS (verified)

Similar questions
Math, 3 months ago