Math, asked by tonniartandcraft, 8 hours ago

Solve the following equation and verify your answer ​

Attachments:

Answers

Answered by Rahul7895
1

Answer:

 \frac{(3x + 4) - 2x}{(2 - 5x) - 7x}   =  \frac{ - 9}{58}  \\  \frac{3x - 2x + 4}{2 - 5x - 7x}  =  \frac{ - 9}{58}  \\  \frac{x + 4}{2 - 12x}  =  \frac{ - 9}{58}  \\ 58(x + 4) =  - 9(2 - 12x) \\ 58x + 232 =  - 18 + 108x \\ 232 + 18 = 108x \times  - 58x \\ 50x = 250 \\ x =  \frac{250}{50}  \\ x = 5

Let's check whether it's correct or not

 \frac{(3 \times 5 +4 ) - 2 \times 5}{(2 - 5 \times 5) - 7 \times 5}  =  \frac{ - 9}{58}  \\  \frac{19 - 10}{ - 23 - 35}  =  \frac{ - 9}{58}  \\  \\  \frac{9}{ - 58}  =  \frac{ - 9}{58}  \\  \frac{ - 9}{58}  =  \frac{ - 9}{58}

L.H.S=R.H.S

hence verified

Answered by anishyadav1207
0

Step-by-step explanation:

3x+4-2x/2-5x-7x=-9/58

x+4/2-12x=-9/58

58x+232=-18+108x

232+18=108x-58x

250=50x

x=250/50

x=5

Now for verification putting value of x in the above equation we get:

(3*5+4)-2*5/(2-5*5)-7*5=-9/58

19-10/-23-35=-9/58

-9/58=-9/58

HENCE, Verified.

Attachments:
Similar questions