Math, asked by tamanna0000007, 1 day ago

solve the following equation and verify your answer.
 \frac{x {}^{2} - (x + 2)(x + 3) }{7x  +1 } \:  =  \:  \frac{2}{3}
chapter- linear equation in one variable
class 8

go to h e l l mr K I T ​

Answers

Answered by Moonlight568
3

Answer:

Given Linear equation in one

variable is 7x/2 = 105/2

Multiply both sides by 2, we get

=> (7x/2 ) x 2 = ( 105 )/2

=> 7x = 105

Divide both sides by 7, we get

=> 7x/7 = 105/7

=> x = ( 7 x 15 )/7

=> x = 15

Therefore,

x = 15

Answered by Vibes51
61

Answer:

\huge\mathfrak\purple{Solution} \:

  \frac{ {x}^{2}  -  (x + 2)(x + 3) }{7x + 1}  =  \frac{2}{3}  \\

\frac{ {x}^{2}  - [  (x + 2)(x + 3)] }{7x + 1}  =  \frac{2}{3}  \\

 \frac{ {x}^{2}  - [   \: {x}^{2}  + 3x + 2x + 6 \:] }{7x + 1}  =   \frac{2}{3}  \\

 \frac{ {x}^{2} - \: [  {x}^{2}   + 5x + 6  ]}{7x + 1}  =  \frac{2}{3}  \\

 \frac{ {x}^{2}  -  {x}^{2} - 5x - 6 }{7x + 1}  =  \frac{2}{3}  \\

 \frac{ - 5x -  - 6}{7x + 1}  =  \frac{2}{3}  =  \frac{2}{3}  \\

By cross Multiplication

3(-5x - 6) = 2(7x + 1)

-15x - 18 = 14x + 2

-15x -14x = 18 + 2

-29x = 20

x =  \frac{ - 20}{29}  \\

verification \: for \: x \:  =  \frac{ - 20}{29}  \\

l.h.s =  \frac{ - 5x - 6}{7x + 1}  \\

 =  \frac{ - 5( \frac{ - 20}{29} ) -  \frac{6}{1} }{7( \frac{ - 20}{29}) +  \frac{1}{1}  }  \\

 =  \frac{ \frac{100}{29}  -  \frac{6}{1} }{ \frac{ - 140}{29} +  \frac{1}{1}  }  \\

l.h.s =  \frac{ \frac{100 - 29 \times 6}{29} }{ \frac{ - 140 + 29}{29} }  \\

 =  \frac{ \frac{100 - 174}{29} }{ \frac{ - 111}{29} }  \\

 =  \frac{  \frac{ - 74}{29} }{ \frac{ - 111}{29} }  \\

 =  \frac{ - 74}{29}  \times  \frac{29}{ - 111}  \\

 =  \frac{74}{111}  \\

[ each numerator & denominator is divided by 37 ]

 =  \frac{2}{3}  = r.h.s \\

Hence

x =  \frac{ - 20}{29} is \: the \: solution \\

Step-by-step explanation:

i hope it helps

#be brainly

Similar questions