solve the following equation

Answers
Answer :-
Value of x is 2 and value of y is 1.
Explanation :-
Given pair of linear equations
- 2x + y = 5 -----eq(1)
- 3x - 2y = 4-----eq(2)
Finding the value of y in terms of x of eq(1)
⇒ 2x + y = 5
⇒ y = 5 - 2x
Substitute y = 5 - 2x in eq(2)
⇒ 3x - 2y = 4
⇒ 3x - 2(5 - 2x) = 4
⇒ 3x - 10 + 4x = 4
⇒ 7x - 10 = 4
⇒ 7x = 4 + 10
⇒ 7x = 14
⇒ x = 14/7
⇒ x = 2
Substitute the value of x in y = 5 - 2x
⇒ y = 5 - 2x
⇒ y = 5 - 2(2)
⇒ y = 5 - 4
⇒ y = 1
∴ value of x is 2 and value of y is 1
Note :-
The method used above is SUBSTITUTION METHOD.
Answer :-
Value of x is 2 and value of y is 1.
Explanation :-
Given pair of linear equations
- 2x + y = 5 -----eq(1)
- 3x - 2y = 4-----eq(2)
Finding the value of y in terms of x of eq(1)
⇒ 2x + y = 5
⇒ y = 5 - 2x
Substitute y = 5 - 2x in eq(2)
⇒ 3x - 2y = 4
⇒ 3x - 2(5 - 2x) = 4
⇒ 3x - 10 + 4x = 4
⇒ 7x - 10 = 4
⇒ 7x = 4 + 10
⇒ 7x = 14
⇒ x = 14/2
⇒ x = 2
Substitute the value of x in y = 5 - 2x
⇒ y = 5 - 2x
⇒ y = 5 - 2(2)
⇒ y = 5 - 4
⇒ y = 1
∴ value of x is 2 and value of y is 1.
Note :-
The method used above is SUBSTITUTION METHOD.