Math, asked by harikanaidu857, 3 months ago

Solve the following equations by cramer's method
3x+y-4z=0, -x+2y+z=4 and 2x-y+3z=8

Answers

Answered by mathdude500
6

Given Question :-

Solve the following equations by cramer's method

  • 3x+y-4z=0
  • -x+2y+z=4
  • 2x-y+3z=8

─━─━─━─━─━─━─━─━─━─━─━─━─

Step by Step explanation :-

The system of equations are

3x + y - 4z = 0

- x + 2y + z = 4

2x - y + 3z = 8

☆ The matrix form of the above equation are as follow : -

\begin{gathered}\sf\left[\begin{array}{ccc}3&1& - 4\\ - 1&2&1\\2&-1&3\end{array}\right]\end{gathered}\begin{gathered}\sf \left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}0\\4\\8\end{array}\right]\end{gathered}

where,

\begin{gathered}\sf A=\left[\begin{array}{ccc}3&1& - 4\\ - 1&2&1\\2&-1&3\end{array}\right]\end{gathered}

\begin{gathered}\sf B=\left[\begin{array}{c}0\\4\\8\end{array}\right]\end{gathered}

\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}

Now,

\tt \:   \longrightarrow \: |A| =  \begin{vmatrix} 3 & 1 &  - 4 \\  - 1 & 2 & 1 \\ 2 &  - 1 & 3 \end{vmatrix}

\tt\implies \: |A|  = 3(6 + 1) - 1( - 3 - 2) - 4(1 - 4)

\tt\implies \: |A|  \:  = 21 + 5 + 12 = 38

\tt\implies \:system \: is \: consistent \: having \: unique \: solution.

\tt \:   \longrightarrow \:Consider  \: D_1 \:  = \begin{vmatrix}0  & 1 &   - 4\\ 4 & 2 & 1 \\ 8 &  - 1 & 3 \end{vmatrix}

\tt\implies \: D_1 =  - 1(12 - 8) - 4( - 4 - 16)

\tt\implies \:D_1 = 76

\tt \:   \longrightarrow \:\:Consider  \: D_2 \:  = \begin{vmatrix} 3 & 0 &  - 4 \\ -  1 & 4 & 1 \\ 2 & 8 & 3 \end{vmatrix}

\tt\implies \:D_2 = 3(12 - 8) - 4( - 8 - 8)

\tt\implies \:D_2 \:  = 76

\tt \:   \longrightarrow \:Consider  \: D_3 \:  = \begin{vmatrix} 3 & 1 & 0 \\  - 1& 2 & 4 \\ 2 &  - 1 & 8 \end{vmatrix}

\tt\implies \:D_3 \:  = 3(16 + 4) - 1( - 8 - 8)

\tt\implies \:D_3 \:  = 76

\tt \:   \longrightarrow \: \therefore \: x \:  = \dfrac{ D_1}{ |A| }  = \dfrac{76}{38}  = 2

\tt \:   \longrightarrow \: \therefore \: y \:  = \dfrac{ D_2}{ |A| }  = \dfrac{76}{38}  = 2

\tt \:   \longrightarrow \: \therefore \: z \:  = \dfrac{ D_3}{ |A| }  = \dfrac{76}{38}  = 2

Similar questions