Solve the following equations for x and y. log6 x^2y^5 = 2 + 3log10 2, log 10 x^4y^3 = 4 - log10 2
Answers
Step-by-step explanation:
Let x denote the required logarithm.
Therefore, log2√3 1728 = x
or, (2√3)x = 1728 = 26 ∙ 33 = 26 ∙ (√3)6
or, (2√3)x = (2√3)6
Therefore, x = 6.
(ii) 0.000001 to the base 0.01.
Solution:
Let y be the required logarithm.
Therefore, log0.01 0.000001 = y
or, (0.01y = 0.000001 = (0.01)3
Therefore, y = 3.
2. Proof that, log2 log2 log2 16 = 1.
Solution:
L. H. S. = log2 log2 log2 24
= log2 log2 4 log2 2
= log2 log2 22 [since log2 2 = 1]
= log2 2 log2 2
= 1 ∙ 1
= 1. Proved.
3. If logarithm of 5832 be 6, find the base.
Solution:
Let x be the required base.
Therefore, logx 5832 = 6
or, x6 = 5832 = 36 ∙ 23 = 36 ∙ (√2)6 = (3 √2)6
Therefore, x = 3√2
Therefore, the required base is 3√2
4. If 3 + log10 x = 2 log10 y, find x in terms of y.
Solution:
3 + log10 x = 2 log10 y
or, 3 log10 10 + log10 x= 1og10 y2 [since log10 10 = 1]
or. log10 103 + log10 x = log10 y2
or, log10 (103 ∙ x) = log10 y2
or, 103 x = y2
or, x = y2/1000, which gives x in terms y.
5. Prove that, 7 log (10/9) + 3 log (81/80) = 2log (25/24) + log 2.
Solution:
Since,7 log (10/9) + 3 log (81/80) - 2 log (25/24)
= 7(log 10 – log 9)+ 3(1og 81 - log 80)- 2(1og 25 - 1og 24)
= 7[log(2 ∙ 5) - log32] + 3[1og34 - log(5 ∙ 24)] - 2[log52 - log(3 ∙ 23)]
= 7[log 2 + log 5 – 2 log 3] + 3[4 log 3 - log 5 - 4 log 2] - 2[2 log 5 – log 3 – 3 log 2]
= 7 log 2+ 7 log 5 - 14 log 3 + 12 log 3 – 3 log 5 – 12 log 2 – 4 log 5 + 2 log 3 + 6 log 2
= 13 log 2 – 12 log 2 + 7 log 5 – 7 log 5 – 14 log 3 + 14 log 3 = log 2
Therefore 7 log(10/9) +3 log (81/80) = 2 log (25/24) + log 2. Proved.