Math, asked by verdanttwitterpated, 2 months ago

Solve the following . Find

Attachments:

Answers

Answered by BARATHSHIVAM
2

Step-by-step explanation:

I

t h i n k

t h i s

is

t h e

a n s

c h e c k

t h i s

Attachments:
Answered by Anonymous
13

Answer:

♦ a = 29/46

♦ b = - 9/46

Step-by-step explanation:

 \sf \implies \:  \dfrac{5 -  2 \sqrt{3} } {7 -  \sqrt{3} } = a + \sqrt{3} b

 \\  \sf \implies \:  \dfrac{5 -  2 \sqrt{3}  \:  \times 7  +   \sqrt{3}  } {7 -  \sqrt{3}  \times 7 +  \sqrt{3}} = a + \sqrt{3} b

\\  \sf \implies \: \dfrac{35 + 5 \sqrt{3} - 14 \sqrt{3} - 2 \times 3 }{ {7}^{2} -  { (\sqrt{3}) }^{2}  } = a + \sqrt{3} b

\\  \sf \implies \: \dfrac{35 + 5 \sqrt{3} - 14 \sqrt{3} - 6}{ 49 -  3 } = a + \sqrt{3} b

\\  \sf \implies \: \dfrac{35 + 5 \sqrt{3} - 14 \sqrt{3} - 6}{ 46 } = a + \sqrt{3} b

\\  \sf \implies \: \dfrac{29  -  9 \sqrt{3}}{ 46 } = a + \sqrt{3} b

\\  \sf \implies \: \dfrac{1}{ 46 }( 29  -  9 \sqrt{3}) \:  = a + \sqrt{3} b

\\  \sf \implies \: (  \frac{29}{46}  -    \frac{9\sqrt{3}}{46}) \:  = a + \sqrt{3} b

Therefore,

\\  \sf \leadsto \: a =  \dfrac{29}{46}

\\  \sf \leadsto \: b = - \dfrac{9}{46}

━━━━━━━━━━━━━━━━━━━━━

Similar questions