Solve the following in equation and represent the solution set on the number line3x/5+ 2 < x + 4 ≤ x/2+5,x€R
Answers
Step-by-step explanation:
ANSWER
Take the first inequality:
4x−19<
5
3x
−2⇒20x−95<3x−10⇒17x<85
⇒x<5...(1)
Now tale the second inequality:
5
3x
−2≤−
5
2
+x⇒3x−10≤−2+5x⇒−8≤2x
⇒x≥−4...(2)
From (1) and (2)
−4≤x<5
Answer :
• x € (-5 , 2] ( ie. –5 < x ≤ 2 , x € R )
• For representation of solution set on number line , please refer to the attachment.
Solution :
• Given : 3x/5 + 2 < x + 4 ≤ x/2 + 5 , x € R
• To find : Solution set
We have ,
3x/5 + 2 < x + 4 ≤ x/2 + 5 , x € R
Case 1 :
=> 3x/5 + 2 < x + 4 , x € R
=> x + 4 > 3x/5 + 2 , x € R
=> x - 3x/5 > 2 - 4 , x € R
=> (5x - 3x)/5 > -2 , x € R
=> 2x/5 > -2 , x € R
=> x > -2•(5/2) , x € R
=> x > -5 , x € R
=> x € (-5 , ∞)
Case 2 :
=> x + 4 ≤ x/2 + 5 , x € R
=> x - x/2 ≤ 5 - 4 , x € R
=> (2x - x)/2 ≤ 1 , x € R
=> x/2 ≤ 1 , x € R
=> x ≤ 1•2 , x € R
=> x ≤ 2 , x € R
=> x € (∞ , 2]
→ Here , the intersection set of case1 and case2 will give the solution set .
Thus ,
Solution set will be given as ;
→ x € (-5 , ∞) and x € (∞ , 2]
→ x € (-5 , ∞) ∩ (∞ , 2]
→ x € (-5 , 2] ( ie. –5 < x ≤ 2 , x € R )