Math, asked by saidmohamudegal, 1 day ago

solve the following inequality for x and illustrate the solution with diagram.
1) 2x+1<5
b) 5x-3<_11​

Answers

Answered by PharohX
2

 \huge{  \blue{  \boxed{\green{\mathbb{SOLUTION}}}}}

 \huge{  \blue{  \boxed{\green{\mathbb{1.}}}}}

 \blue{ \sf \: 2x + 1 &lt; 5}

 \pink{ \mathcal{ \: Substract \:  \:  1 \:  \:  to \:  \:  both \:  \:  sides}}

 \blue{  \rightarrow\sf \: 2x + 1 - 1 &lt; 5 - 1}

 \blue{  \rightarrow\sf \: 2x  &lt; 4}

 \pink{ \mathcal{ \: Divide \:  \:  both \:  \:  sides  \:  \: by \:  \:  2}}

 \blue{  \rightarrow\sf \:  \frac{2x}{2}  &lt;  \frac{4}{2} } \\

 \blue{  \rightarrow \boxed{\sf \: x  &lt; 2}}

 \green{  \rightarrow \boxed{\sf \: x  \in ( -  \infty \: 2)}}

 \huge{  \blue{  \boxed{\green{\mathbb{2.}}}}}

 \blue{ \sf \: 5x  -  3\leqslant 11}

 \pink{ \mathcal{ \: Add  \:  \: both \:  \:  side \:  \:  by  \:  \: 3}}

 \blue{ \rightarrow \sf \: 5x  -  3 + 3\leqslant 11 + 3}

 \blue{ \rightarrow \sf \: 5x  \leqslant 14}

 \pink{ \mathcal{ \: Divide \:  \:  both \:  \:  sides  \:  \: by \:  \:  5}}

 \blue{ \rightarrow \sf \:  \frac{5x}{5}  \leqslant  \frac{14}{5} }  \\

 \blue{ \rightarrow \sf \:  x \leqslant  \frac{14}{5} }  \\

 \green{  \rightarrow \boxed{\sf \: x  \in ( -  \infty \:  \frac{14}{5} )}} \\

 {  \blue{  \boxed{\green{\mathbb{Varified  \:  \: Answer }}}}}

Similar questions