Solve the following inequality ==>
Answers
The absolute value l lx-2l -3l is less than or equal to 0.
Let take an example that lxl is less than or equal to 5.
If the value of x is less than 5 than -5≤x≤5
so -5≤x or x≤5
-( lx-2l -3)≤0 ≤lx-2l-3
⇒-lx-2l ≤ 3 ≤lx-2l [by adding 3 in all inequalities]
⇒-lx-2l ≤3 or 3≤lx-2l
⇒lx-2l ≥3 (sign changes) or 3≤lx-2l
⇒ lx-2l ≥3 (both of above means same)
⇒x-2≥ +-3
⇒x≥ (+-3) +2
⇒ x ≥5,-1
⇒x≥5 or x≥-1
.............................................................................................
| |x -2| - 3 | ≤ 0
Remove first modulus bracket:
|x -2| - 3 = ±0
Since 0 has not positive or negative:
|x -2| - 3 = 0
Add 3 to both sides:
|x -2| = ±3
Remove modulus bracket:
x -2 = ±3
Add 3 to both sides:
x = 3 + 2 or x = -3 + 2
Evaluate:
x = 5 or x = -1
Answer: x = 5 or x = -1
.............................................................................................
⭐⭐