Math, asked by AestheticSky, 1 month ago

Solve the following inequality with the help of wavy curve method:-

 \bigstar \boxed{ \sf  \frac{ \sqrt{2 {x}^{2} + 15x - 17 } }{10 - x} \geqslant 0  }  \bigstar

Have a great answering time :D​

Answers

Answered by Anonymous
49

Given :-

√2x² + 15x - 17/10 - x ≥ 0

To Find :-

The solution of the given inequality with the help of wavy curve method .

Solution :-

At first , you should note that x can't be equal to 10 . Because if x becomes 10 then. , the denominator becomes 0 . So to avoid this we will not take x as 10 .

=> √2x² + 15x - 17/10 - x ≥ 0

=> Multiplying both sides by √2x² + 15x - 17 we get ,

=> 2x² + 15x - 17/10 - x ≥ 0

=> 2x² - 2x + 17x - 17 / 10 - x ≥ 0

=> 2x ( x - 1 ) + 17 ( x - 1 ) / 10 - x ≥ 0

=> ( 2x + 17 ) ( x - 1 ) / 10 - x ≥ 0

=> Multiplying both sides by ( 10 - x )² we get ,

=> ( 10 - x ) ( 2x + 17 ) ( x - 1 ) ≥ 0

Now , By equating all terms to 0 we get , -17/2. ,10 and 1 .

=> Now Mark 10 , 1 and -17/2 On the number line

=> By wavy curve method , the possible values of "x" are such that :-

  • -17/2 ≥ x
  • x ≥ 1
  • x > 10
  • x ≠ 10

Since. ,by the above conditions for value of "x" The solution set is given by :-

=> ( - ∞ , -17/2 ] U [ 1 , ∞ )

=> But as here 10 lies in the given solution set so we use difference of set to avoid "x" as 10 . Henceforth the required solution set is :-

=> ( - ∞ , -17/2 ] U [ 1 , ∞ ) - { 10 }

You should note that wavy curve method is also known as Method of intervals .

Attachments:
Answered by Anonymous
0

Given Expression :-

\\  \quad \bullet \quad \sf \bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } + \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} }=x \\

This expression can be written as follows :-

\\  \quad \bullet \quad \underline{  \boxed{\sf   \sqrt{ \bigg(x - \dfrac{1}{x} \bigg)}  +  \sqrt{\bigg(1 - \dfrac{1}{x} \bigg)}=x} } \frak{ \:  -  -  - (i)}\\

Solution :-

Multiply the Above eq (i) with the conjugates of LHS

\\  \quad \longrightarrow \quad \sf   \sqrt{ \bigg(x - \dfrac{1}{x} \bigg)}  +  \sqrt{\bigg(1 - \dfrac{1}{x} \bigg)}  \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)}  =x  \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} ^{2}  -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)}^{2}  = x \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf \bigg(x -  \dfrac{1}{x}   \bigg)-  \bigg( 1 -  \dfrac{1}{x} \bigg) = x \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  \frac{x - 1}{x}  = \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  1 -  \frac{1}{x}   = \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

  \\  \quad \longrightarrow \quad  \underline{\boxed{ \sf \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} = 1 -  \frac{1}{x} }} \frak{ \:  -  -  - (ii)} \\

Now, by adding equations (i) and (ii) we get :-

 \\  \quad \longrightarrow \quad  \underline{\boxed{ \sf 2\sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  =  x -  \frac{1}{x}  + 1}} \frak{ \:  -  -  - (iii)} \\

Assume the following :-

 \quad \mapsto \quad \sf \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  = a \\

 \quad \therefore \quad \sf  \bigg(x -  \dfrac{1}{x}   \bigg)  =  {a}^{2}  \\

Now, substituting the above values in equation (iii) , we get

 \\  \quad \longrightarrow  \quad \sf 2a =  {a}^{2}  + 1 \\

 \\  \quad \longrightarrow \quad \sf  {a}^{2}  - 2a + 1 = 0 \\

 \quad \longrightarrow \quad \sf  {(a - 1)}^{2}  = 0 \\

 \\  \quad \longrightarrow \quad  \boxed{\sf a =  \pm 1} \\

Now,

 \\ \quad :  \implies \quad \sf \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  = a \\

 \\ \quad  : \implies \quad \sf  \bigg(x -  \dfrac{1}{x}   \bigg)  = 1 \\

 \\ \quad :  \implies \quad \sf   {x}^{2}  - 1    = x \\

\\ \quad :  \implies \quad \sf   {x}^{2}  - x - 1    = 0 \\

\\ \quad :  \implies \quad \sf   x  =  \frac{ - ( - 1) \pm   \sqrt{ { ( - 1)}^{2}  - 4( - 1)(1)}  }{2}  \\

\\ \quad  \therefore \quad  \boxed{\frak{   x  =  \frac{ 1 \pm   \sqrt{5}  }{2}}} \bigstar  \\

Similar questions