solve the following inequation and represent your solution on the real number line -5 1/2 - x < 1/2 - 3x < 3 1/2, x € R
Answers
Answer :
x € (-1 , 3)
Solution :
- Given : -5½ - x < ½ - 3x < 3½ , x € R
- To find : Solution set
We have ;
-5½ - x < ½ - 3x < 3½ , x € R
Here ,
Two cases arise ;
1) -5½ - x < ½ - 3x , x € R
AND
2) ½ - 3x < 3½ , x € R
Case1 : -5½ - x < ½ - 3x , x € R
=> -5½ - x < ½ - 3x , x € R
=> 3x - x < ½ + 5½ , x € R
=> 2x < ½ + 11⁄2 , x € R
=> 2x < (1 + 11)/2 , x € R
=> 2x < 12⁄2 , x € R
=> 2x < 6 , x € R
=> x < 6⁄2 , x € R
=> x < 3 , x € R
=> x € (-∞ , 3)
AND
Case2 : ½ - 3x < 3½ , x € R
=> ½ - 3x < 3½ , x € R
=> -3x < 3½ - ½ , x € R
=> -3x < 7⁄2 - ½ , x € R
=> -3x < (7 - 1)/2 , x € R
=> -3x < 6⁄2 , x € R
=> -3x < 3 , x € R
=> 3x > -3 , x € R
=> x > -3⁄3 , x € R
=> x > -1 , x € R
=> x € (-1 , ∞)
Here ,
The solution set of the given inequation will be given as the intersection of the solutions found in both the cases .
Thus ,
=> x € (-∞ , 3) and x € (-1 , ∞)
=> x € (-∞ , 3) ∩ (-1 , ∞)
=> x € (-1 , 3)
Hence ,
The solution set is (-1 , 3) .
Step-by-step explanation:
that's all I think bro wait I know it would be correct