Math, asked by 12ahujagitansh, 6 hours ago

Solve the following integral

 \int \:  \frac{dx}{ \sqrt{ {sin}^{3} x \: sin(x + a)} }

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \:  \frac{dx}{ \sqrt{ {sin}^{3}x \: sin(x + a)} }

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {sin}^{3}x(sinx \: cosa + sina \: cosx )} }

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {sin}^{3}x\bigg(sinx \: cosa + sina \:sinx \times \dfrac{cosx}{sinx}  \bigg)} }

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {sin}^{4}x\bigg(\: cosa + sina \:cotx  \bigg)} }

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ {sin}^{2} x \sqrt{ \: cosa + sina \:cotx  } }

\rm \:  =  \: \displaystyle\int\rm  \frac{ {cosec}^{2}x \:  dx}{\sqrt{ \: cosa + sina \:cotx  } }

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\: \sqrt{cosa + sina \: cotx }\:  =  \: y}

 \purple{\rm :\longmapsto\:cosa + sina \: cotx \:  =  \:  {y}^{2} }

 \purple{\rm :\longmapsto\: -  \: sina \:  {cosec}^{2} x \: dx \:  =  \: 2y \: dy }

 \purple{\rm :\longmapsto\: \:  {cosec}^{2} x \: dx \:  =  \:  -  \: \dfrac{2y}{sina}  \: dy }

 \purple{\rm :\longmapsto\: \:  {cosec}^{2} x \: dx \:  =  \:  -  \: 2y \: coseca \:   \: dy }

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{ - 2y \: coseca \: }{y} \: dy

\rm \:  =  \:  -  \: 2 \: coseca \: \displaystyle\int\rm dy

\rm \:  =  \:  -  \: 2 \: coseca \:y \:  +  \: c

\rm \:  =  \:  -  \: 2 \: coseca \:( \sqrt{cosa + sina \: cotx} \:  +  \: c

Hence,

\boxed{\tt{ \rm \displaystyle\int\rm  \frac{dx}{ \sqrt{ {sin}^{3}x \: sin(x + a)} } =- 2 coseca \: ( \sqrt{cosa + sina \: cotx}  +  \: c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \: \frac{dx}{ \sqrt{ {sin}^{3}x \: sin(x + a)} } \\  \\ can \:  \:  be \:  \:  rewritten \:  \:  as \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{dx}{ \sqrt{ {sin}^{3}x(sinx \: cosa + sina \: cosx )} }  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{dx}{ \sqrt{ {sin}^{3}x\bigg(sinx \: cosa + sina \:sinx \times \dfrac{cosx}{sinx} \bigg)} }  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{dx}{ \sqrt{ {sin}^{4}x\bigg(\: cosa + sina \:cotx \bigg)} }  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{dx}{ {sin}^{2} x \sqrt{ \: cosa + sina \:cotx } }

\rm \:  =  \: \displaystyle\int\rm \frac{ {cosec}^{2}x \: dx}{\sqrt{ \: cosa + sina \:cotx } }

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

\purple{\rm :\longmapsto\: \sqrt{cosa + sina \: cotx }\: = \: y} \\  \\ \purple{\rm :\longmapsto\:cosa + sina \: cotx \: = \: {y}^{2} } \\  \\ \purple{\rm :\longmapsto\: - \: sina \: {cosec}^{2} x \: dx \: = \: 2y \: dy } \\  \\ \purple{\rm :\longmapsto\: \: {cosec}^{2} x \: dx \: = \: - \: \dfrac{2y}{sina} \: dy } \\  \\ \purple{\rm :\longmapsto\: \: {cosec}^{2} x \: dx \: = \: - \: 2y \: coseca \: \: dy }

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\int\rm \frac{ - 2y \: coseca \: }{y} \: dy  \\  \\ \rm \:  =  \: - \: 2 \: coseca \: \displaystyle\int\rm dy  \\  \\ \rm \:  =  \: - \: 2 \: coseca \:y \: + \: c  \\  \\ \rm \:  =  \: - \: 2 \: coseca \:( \sqrt{cosa + sina \: cotx} \: + \: c  \\  \\ Hence, \\  \\ \boxed{\tt{ \rm \displaystyle\int\rm \frac{dx}{ \sqrt{ {sin}^{3}x \: sin(x + a)} } =- 2 coseca \: ( \sqrt{cosa + sina \: cotx} + \: c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions