Math, asked by whitepearl434, 3 months ago

solve the following limit please... i will mark u brainliest​

Attachments:

sardarsaabjidji2580: hlo

Answers

Answered by Anonymous
1

Answer:

  Apply L'hospital's rule and differentiate both numerator and denominator.

And then apply limit x=0.

Step-by-step explanation:

This will be the final answer

Attachments:

Anonymous: It would be kind of you to mark me as the brainliest
sardarsaabjidji2580: why bro
whitepearl434: can u explain in detail
Anonymous: yes I can
Anonymous: You have to refer to L'hospital's rule
Answered by Anonymous
14

Explanation :

 \tt \bigstar \:  lim_{x \to 0} \bigg(  \cfrac{ \sqrt{3 + x}  -  \sqrt{3 - x} }{x {}^{3} + 4x }  \bigg)  \\  \\  \\   \underline{\tt \: Applying  \: L - Hospital  \: rule, }\\  \\  \\   :  \implies \:  \tt \: lim_{x \to 0}  \bigg( \cfrac{ \cfrac{d}{dx}( \sqrt{3 + x} -  \sqrt{3 - x})}{ \cfrac{d}{dx} (x {}^{3}  + 4x)}  \bigg) \\  \\  \\ :  \implies \:  \tt \: lim_{x \to 0}   \bigg( \cfrac{ \cfrac{1}{2 \sqrt{3 + x} }   +  \cfrac{1}{2 \sqrt{3 - x} } }{3x {}^{2} + 4 }  \bigg) \\  \\  \\ :  \implies \:  \tt \: lim_{x \to 0}  \bigg(  \cfrac{ \cfrac{ \sqrt{3 -   x}  +   \sqrt{3  +  x}  }{2 \sqrt{9 - x {}^{2} } } }{3 x{}^{2}  + 4} \bigg) \\  \\  \\ :  \implies \:  \tt \: lim_{x \to 0}  \bigg( \dfrac{ \sqrt{3 - x} +  \sqrt{3 - x}  }{2 \sqrt{9 - x {}^{2} }(3x {}^{2} + 4)  }  \bigg) \\  \\  \\ :  \implies \:  \tt  \bigg( \cfrac{ \sqrt{3 - 0}  +  \sqrt{3 - 0} }{2 \sqrt{9 - 0 {}^{2} } (3 \times 0 {}^{2} + 4) }  \bigg) \\  \\  \\ :  \implies \:  \tt  \bigg(  \cfrac{2 \sqrt{3} }{6(4)} \bigg) \\  \\  \\ :  \implies \:  \tt  \bigg(  \cfrac{ \not2 \sqrt{3} }{ \not{24}} \bigg) \\  \\  \\ :  \implies { \underline{ \boxed{\tt  \cfrac{ \sqrt{3} }{12}  }}} \bigstar

Hence :

\dag{\boxed{\tt lim_{x \to 0} \bigg(  \cfrac{ \sqrt{3 + x}  -  \sqrt{3 - x} }{x {}^{3} + 4x } \bigg) =\cfrac{\sqrt{3}}{12}}}


Anonymous: In third step ( 3 - x ) not ( 3 + 2 )
Similar questions