Math, asked by MuneebAhmadFarjad, 1 year ago

solve the following pair of linear equation by cross multiplication method:- X + 2 Y = 2 and X - 3y = 7

Answers

Answered by jitendra420156
16

Therefore the solution of the given two equations is x=4  and y= - 1.

Step-by-step explanation:

The cross multiplication method:

a_1x+b_1y+c_1=0

a_2x+b_2y+c_2=0

The solution of the above two equation is

\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_2c_1-a_1c_2}=\frac{1}{a_1b_2-a_2b_1}

\therefore x=\frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1}    and    y=\frac{a_2c_1-a_1c_2}{a_1b_2-a_2b_1}

Given equation are

x+2y=2          \Rightarrow x+2y-2=0.......(1)

x-3y=7          \Rightarrow x-3y-7=0 .......(2)

Here a_1=1, b_1=2,c_1=-2, a_2=1, b_2=-3, c_2=-7

\frac{x}{2.(-7)-(-3).(-2)}=\frac{y}{1.(-2)-1.(-7)}=\frac{1}{1.(-3)-1.2}

\frac{x}{-20}=\frac{y}{5}=\frac{1}{-5}

\therefore x= \frac{-20}{-5}=4

y=\frac{5}{-5}=-1

Therefore the solution of the given two equations is x=4  and y= - 1.

Similar questions