Math, asked by rasalachittirasalach, 6 months ago

Solve the following pair of linear equation by substitution method 2x-3y=19 and 3x-2y=21​

Answers

Answered by prince5132
19

GIVEN :-

  • 2x - 3y = 19.
  • 3x - 2y = 21.

TO FIND :-

  • The value of x and y.

SOLUTION :-

 \\  :  \implies \displaystyle \sf \: 2x - 3y = 19 \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup 1\bigg \rgroup \\  \\  \\

:  \implies \displaystyle \sf \: 3x - 2y =2 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup 2\bigg \rgroup \\  \\

From Equation 1,

 \\ :  \implies \displaystyle \sf \: 2x - 3y = 19  \\  \\  \\

 :  \implies \displaystyle \sf \: 2x = 19 + 3y \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \: x =  \frac{19 + 3y}{2} }} \\  \\

Substitute the value of x in equation 2,

 \\  :  \implies \displaystyle \sf \: 3x - 2y = 21 \\  \\  \\

 :  \implies \displaystyle \sf \: 3 \times  \frac{19 + 3y}{2}  - 2y = 21 \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{3(19 + 3y)}{2}  - 2y = 21 \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{57 + 9y}{2}  - 2y = 21 \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{57 + 9y - 4y}{2}  = 21 \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{57 + 5y}{2}  = 21 \\  \\  \\

 :  \implies \displaystyle \sf \: 57 + 5y = 21 \times 2 \\  \\  \\

 :  \implies \displaystyle \sf \: 57 + 5y = 42 \\  \\  \\

 :  \implies \displaystyle \sf \: 5y = 42 - 57 \\  \\  \\

 :  \implies \displaystyle \sf \: 5y =  - 15 \\  \\  \\

 :  \implies \displaystyle \sf \: y =  \frac{ - 15}{5}  \\  \\  \\

 :  \implies  \underline{ \boxed{\displaystyle \sf \: y =  - 3}} \\  \\

Substitute the value of y in the equation 1,

 \\  :  \implies \displaystyle \sf \: 2x - 3y = 19 \\  \\  \\

 :  \implies \displaystyle \sf \: 2x - 3 \times -3  = 19\\  \\  \\

 :  \implies \displaystyle \sf \: 2x + 9 = 19 \\  \\  \\

 :  \implies \displaystyle \sf \: 2x = 19 -9 \\  \\  \\

 :  \implies \displaystyle \sf \: 2x = 10 \\  \\  \\

 :  \implies \displaystyle \sf \: x =  \frac{10}{2}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \: x = 5}} \\ \\

Hence the required value of x is 5 and required value of y is -3.

Answered by Anonymous
57

Answer:

Given :

  • 2x - 3y = 19 ...... 1

  • 3x - 2y = 21 ..... 2

To Find :

  • The value of x and y

Solution :

Concept :

  • Use a line already drawn on a graph and its demonstrated points before creating a linear equation.

  • Follow this formula in making slope-intercept linear equations: y = mx + b. Determine the value of m, which is the slope (rise over run).

Find the slope by finding any two points on a line.

Multiplying (1) by 2 & (2) by 3

4x - 6y = 38 .... 3

9x - 6y = 63 ..... 4

Subtracting (3) from (4)

9x - 6y = 63

- 4x - 6y = 38

(+) (-)

----------------------

5x = 25

x = 5

Putting x = 5 in (1)

2(5) - 3y = 19

10 - 3y = 19

-3y = 19 - 10

-3y = 9

y = -3

(x, y) = (5, -3)

Hence the value of x = 5 and y = 3

Similar questions