Math, asked by thunderbird6293, 2 months ago

Solve the following pair of linear equation by substitution method 3x+2y=14,x-4y+7=0

Answers

Answered by BrainlyTwinklingstar
0

Answer

\sf \dashrightarrow 3x + 2y = 14 \: \: --- (i)

\sf \dashrightarrow x - 4y + 7 = 0 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 3x + 2y = 14

\sf \dashrightarrow 3x = 14 - 2y

\sf \dashrightarrow x = \dfrac{14 - 2y}{3}

Now, we can find the value of y by second equation.

\sf \dashrightarrow x - 4y + 7 = 0

\sf \dashrightarrow x - 4y = -7

\sf \dashrightarrow \dfrac{14 - 2y}{3} - 4y = -7

\sf \dashrightarrow \dfrac{14 - 2y - 12y}{3} = -7

\sf \dashrightarrow \dfrac{14 - 14y}{3} = -7

\sf \dashrightarrow 14 - 14y = -7 \times 3

\sf \dashrightarrow 14 - 14y = -21

\sf \dashrightarrow -14y = -21 - 14

\sf \dashrightarrow -14y = -35

\sf \dashrightarrow y = \dfrac{-35}{-14}

\sf \dashrightarrow y = \dfrac{5}{2}

Now, we can find the value of x by first equation.

\sf \dashrightarrow 3x + 2y = 14

\sf \dashrightarrow 3x + 2 \bigg( \dfrac{5}{2} \bigg) = 14

\sf \dashrightarrow 3x + \dfrac{10}{2} = 14

\sf \dashrightarrow 3x + 5 = 14

\sf \dashrightarrow 3x = 14 - 5

\sf \dashrightarrow 3x = 9

\sf \dashrightarrow x = \dfrac{9}{3}

\sf \dashrightarrow x = 3

Hence, the values of x and y are 3 and \sf \dfrac{5}{2} respectively.

Similar questions