Math, asked by Ishan4601, 10 months ago

Solve the following pair of linear equation using cross multiplication method 5 x minus 3 y is equals to 2 and 4 x + 7 y is equals to minus 3

Answers

Answered by isafsafiya
7

Answer:

x =  \frac{ - 30}{47}   \\  \\ y =  \frac{ - 23}{47}

Given:-

5x - 3y = 2 \\ 4x + 7y =  - 3

now for cross multiplication method

we chnge the equation

5x - 3y - 2 = 0 \\  \\ 4x + 7y + 3 = 0

for cross multiplication method

plz refere the picture

here,

 a_{1} = 5 \\  a_{2}  = 4 \\  b_{1}  =  - 3 \\  b_{2}  = 7 \\  c_{1}  =  - 2 \\  c_{2}  = 3

 \frac{x}{ b_{1}   c_{2}  -  b_{2}  c_{1}  }  =  \frac{y}{ c_{1} a_{2}  - c_{2}a_{1} }  =  \frac{1}{a_{1}b_{2} -  \:a_{2}b_{1}}  \\  \\ now \: put \: all \: the \: value \\  \\

 \frac{x}{ - 3 \times 3 - 7 \times 3}  =  \frac{y}{ - 2 \times 4 - 3 \times 5}  =  \frac{1}{5 \times 7 - 4 \times  - 3}  \\  \\  \frac{x}{ - 9 - 21}  =  \frac{y}{ - 8 - 15}  =  \frac{1}{35 - ( - 12)}  \\  \\  \frac{x}{ - 30}  =  \frac{y}{ - 23}  =  \frac{1}{47}  \\  \\  \frac{x}{ - 30}  =  \frac{1}{47}  \\  \\ 47x =  - 30 \\  \\ x =  \frac{ - 30}{47}  \\  \\  \frac{y}{ - 23}  =  \frac{1}{47}  \\  \\ 47y =  - 23 \\  \\ y =  \frac{ - 23}{47}

Attachments:
Answered by SushmitaAhluwalia
4

Solution to the pair of linear equation using cross multiplication method is

x=\frac{5}{47},y= \frac{-23}{47}

  • Given equations can be rewritten as

                  5x - 3y - 2 = 0 ---------------(1)

                  4x + 7y + 3 = 0 --------------(2)

  • Here,

                   a_{1}=5,b_{1}=-3,c_{1}=-2

                   a_{2}=4,b_{2}=7,c_{2}=3

  • We know that by cross multiplication method,

                   x=\frac{b_{1}c_{2}-b_{2}c_{1} }{a_{1}b_{2}-a_{2}b_{1}},y=\frac{c_{1}a_{2}-a_{2}c_{1} }{a_{1}b_{2}-a_{2}b_{1}}

  • Substituting values in x and y, we get

                  x=\frac{(-3)(3)-(7)(-2) }{(5)(7)-(4)(-3)},y=\frac{(-2)(4)-(3)(5) }{(5)(7)-(4)(-3)}

                  x=\frac{-9+14}{35+12},y=\frac{-8-15}{35+12}

                  x=\frac{5}{47},y= \frac{-23}{47}                                          

Similar questions