Solve the following pairs of linear equations:
(a –b)x + (a + b)y = a² –2ab –b²
(a + b)(x + y) = a² + b²
Answers
Answered by
8
Answer
x = a+b , y = - 2ab /(a+b)
=The pair of liner equation is-
(a –b)x + (a + b)y = a² –2ab –b²
(a + b)(x + y) = a² + b²
=(a-b) x + (a + b) y = a² - 2ab - b². …(1)
=(a + b) (x + y) = a² + b²……(2)
=(a + b)x+ (a+b) y = a² + b²…….(3)
=(a-b) x + (a + b) y = a² - 2ab - b²,…(1)
=(a + b)x+ (a+b) y = a² + b²…….(3)
=(a-b-a-b) x = a² - 2ab - b²- a² - b²
=-2b x = - 2ab -2 b²
=-2b x =-2b(a+b)
=(a-b)(a+b) + (a + b) y = a² - 2ab - b²
=a² - b² + + (a + b) y = a² - 2ab - b²
=(a + b) y = a² - 2ab - b² - a² + b²
=(a + b) y = - 2ab
=y = - 2ab /(a+b)
Similar questions
Math,
5 months ago
English,
5 months ago
English,
11 months ago
Social Sciences,
11 months ago
Computer Science,
1 year ago
Art,
1 year ago