Math, asked by khushi9898, 1 day ago

Solve the following pairs of linear equations by cross-multiplication method : 4x + 3y = 28; 9x - 5y = 63

Answers

Answered by kumarankit221106
1

Answer:

\textrm x=7,\textrm y=0x=7,y=0

Step-by-step explanation:

Given the pair of linear equation can be written as

4x+3y-28=0

9x-5y-63=0

these two equations are of the form ax+by+c=0

Here \textrm {a}_{1}=4, \textrm {b}_{1}=3, \textrm{c}_{1}=-28a

1

=4,b

1

=3,c

1

=−28

and \textrm{a}_{2}=9, \textrm{b}_{2}=-5,\textrm{c}_{2}=-63a

2

=9,b

2

=−5,c

2

=−63

We know from Cross multiplication,

\textrm {x}= \dfrac{\textrm b_{1}\textrm c_{2}-\textrm b_{2}\textrm c_{1}}{\textrm a_{1}\textrm b_{2}-\textrm a_{2}\textrm b_{1}}x=

a

1

b

2

−a

2

b

1

b

1

c

2

−b

2

c

1

and \textrm {y}= \dfrac{\textrm c_{1}\textrm a_{2}-\textrm c_{2}\textrm a_{1}}{\textrm a_{1}\textrm b_{2}-\textrm a_{2}\textrm b_{1}}y=

a

1

b

2

−a

2

b

1

c

1

a

2

−c

2

a

1

\textrm {x}= \dfrac{(3\times(-63)) -((-5)\times(-28))}{(4\times(-5))-(9\times3)}x=

(4×(−5))−(9×3)

(3×(−63))−((−5)×(−28))

\Rightarrow \textrm {x}= \dfrac{-189 -140}{-20-27}⇒x=

−20−27

−189−140

\Rightarrow \textrm {x}= \dfrac{-329}{-47}⇒x=

−47

−329

\Rightarrow \textrm x= 7⇒x=7

now \textrm {y}= \dfrac{((-28)\times9)-((-63)\times4)}{(4\times(-5))-(9\times3)}y=

(4×(−5))−(9×3)

((−28)×9)−((−63)×4)

\Rightarrow \textrm {y}= \dfrac{-252+252}{-20-27}⇒y=

−20−27

−252+252

\Rightarrow \textrm y=0⇒y=0

Answered by mamtauasingh
1

4x+3y/9x-5y=28/63

by cross multiplication

63(4x+3y)=28(9x-5y)

252x+189y=252x-140y

252x-252x= -189y-140y

x= -329

Similar questions