Math, asked by vishu126191, 1 month ago

solve the following problem by taking x=cot theta only....

Attachments:

Answers

Answered by itzPapaKaHelicopter
2

Solution:

Given Function:

 =   { \tan }^{ - 1}  \frac{ \sqrt{1 +  {x}^{2}  - 1} }{x}

 \textbf{Put}  \: x =  \tan∅⇒∅ =   { \tan }^{ - 1} x

∴ { \tan}^{ - 1}  \frac{ \sqrt{1 +  {x}^{2} - 1 } }{x}  =  { \tan }^{ - 1} ( \frac{ \sqrt{1 +  { \tan }^{2}∅ - 1 } }{ \tan∅} )

∴1 +  { \tan }^{2} ∅ =  { \sec }^{2}∅  ,

 \textbf{Where}  \: x \:  \textbf{Tends \: to \: }  \:  \tan∅

 =  { \tan }^{ - 1} ( \frac{ 1 -  \cos∅ }{ \sin ∅} )

 =  { \tan}^{ - 1} ( \frac{2 { \sin }^{2}  \frac{∅}{2} }{2 \sin \:  \frac{∅}{2}  \cos \:  \frac{∅}{2}   } )

 =  { \tan}^{ - 1} ( \tan \:  \frac{∅}{2} )

 =  \frac{∅}{2}

 =  \frac{1}{2}   { \tan}^{ - 1} x

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions