Solve the following quadratic equation by factorization method
x
2+4x-(a2+2a-3)=0
Answers
Answer:
457 is the answer of this
I have given different values by mistake....
I have given different values by mistake....substitute ur values and answer.
Answer:
=(a−2) or (−4−a) is the value of \bold{x^{2}+6 x-(a^{2}+2 a-8)=0.}x
2
+6x−(a
2
+2a−8)=0.
Given:
x^{2}+6 x-(a^{2}+2 a-8)=0x
2
+6x−(a
2
+2a−8)=0
To find:
Value of x=?
step by step explaination:
To find the value of “a”, we first find the roots of the equation, for that
x^{2}+6 x-(a^{2}+2 a-8)=0x
2
+6x−(a
2
+2a−8)=0
First solve the equation a^{2}+2 a-8a
2
+2a−8
Using separation method, we get the value of the equation
a^{2}+2 a-8=(a-2)(a+4)a
2
+2a−8=(a−2)(a+4)
Putting the value of the equationa^{2}+2 a-8 as (a-2)(a+4)a
2
+2a−8as(a−2)(a+4) in
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}x=
2a
−b±
b
2
−4ac
Therefore putting the values we get
x=\frac{-6 \pm \sqrt{6^{2}-4.1 \cdot(a-2)(a+4)}}{2}x=
2
−6±
6
2
−4.1⋅(a−2)(a+4)
After Solving the equation by putting the value of c, we get the values or roots of x as
x=(a-2) \text { or }(-4-a)x=(a−2) or (−4−a)
Therefore, the answer to the equation is that the value of “a” can be \bold{x=(a-2) \text { or }(-4-a).}x=(a−2) or (−4−a).