Math, asked by mrunalpatil214, 5 months ago

Solve the following quadratic equation by
factorization method
9x2-9(a+b)x+(2a2+5ab+2b2)​

Answers

Answered by Anonymous
10

Given Equation,

 \sf \:  {9x}^{2}  - 9(a + b)x + (2 {a}^{2}  + 5ab + 2 {b}^{2} ) = 0

Firstly, factorise the constant term :

 \sf \: 2 {a}^{2}  + 5ab +  {2b}^{2}  \\  \\  \dashrightarrow \sf \: 2 {a}^{2}  + 4ab + ab + 2 {b}^{2}  \\  \\   \dashrightarrow \sf \: 2a( {a}^{}  + 2b) +b( a + 2 {b}^{}  )\\  \\   \dashrightarrow \sf \: (2a + b)(a + 2b)

Now,

 \longrightarrow \sf \:  {9x}^{2}  - 9(a + b)x + (2a + b)(a + 2b) = 0 \\  \\  \longrightarrow \sf \:  9{x}^{2}  - 3 \{(2a + b)  +  (a + 2b) \} +  (2a + b)(a + 2b) = 0 \\  \\ \longrightarrow \sf \:  9{x}^{2}  - 3(2a + b)x   - 3  (a + 2b)x +  (2a + b)(a + 2b) = 0 \\  \\ \longrightarrow \sf \:  3x \{3x  - (2a + b) \}  -      (a + 2b) \{3x  -   (2a + b) \} = 0  \\  \\ \longrightarrow \sf \{  3x  - (a + 2b) \}\{3x  -   (2a + b) \} = 0  \\  \\ \longrightarrow \sf \{  3x  - (a + 2b) \} = 0  \: \: or \:  \: \{3x  -   (2a + b) \} = 0 \\  \\ \longrightarrow \boxed{ \boxed{ \sf \: x =  \dfrac{2a + b}{3}  \: or \:  \dfrac{a + 2b}{3} }}


MysterySoul: Magnificent!
SpamHunter: Awesome Answer. dal Chaval
BrainlyMessi10: amazing
Answered by Anonymous
2

9x2−9(a+b)x+(2a2+5ab+2b2) = 0

⟹9x2−9(a+b)x + [2a(a+2b)+b(a+2b)] = 0

⟹ 9x2−9(a+b)x + [(2a+b)(a+2b)] = 0

⟹9x2−3 [(a+2b)(2a+b)]x + [(2a+b)(a+2b)] = 0

⟹3x [3x−(a+2b)][3x−(2a+b)] = 0

⟹3 x = a +2b

⟹x = 3a+2b

or,

⟹3x = 2 a + b

⟹x = 32a + b

Similar questions