Solve the following quadratic equation:
, (x≠a, b)
Answers
Answered by
2
⇒a/(x-b) + b/(x-a) = 2
⇒a(x-a)+b(x-b)=2(x-a)(x-b)
⇒ax - a² + bx - b² = 2x² - 2bx - 2ax + 2ab
⇒2x² - 3ax - 3bx + a² + b² + 2ab = 0
⇒2x² - 3ax - 3bx + (a + b)² = 0
⇒x² -3/2(a+b)x +1/2(a+b)² = 0 Let a+b = m
so
⇒x² - 3/2mx + m² = 0
⇒x² - 1/2 mx - mx + 1/2m² = 0
⇒x(x - 1/2m) - m(x - 1/2m) = 0
⇒(x - 1/2m)(x - m) = 0
So the solutions are
⇒x = 1/2 m = 1/2(a + b)
and
⇒x = m = a+b
⇒a(x-a)+b(x-b)=2(x-a)(x-b)
⇒ax - a² + bx - b² = 2x² - 2bx - 2ax + 2ab
⇒2x² - 3ax - 3bx + a² + b² + 2ab = 0
⇒2x² - 3ax - 3bx + (a + b)² = 0
⇒x² -3/2(a+b)x +1/2(a+b)² = 0 Let a+b = m
so
⇒x² - 3/2mx + m² = 0
⇒x² - 1/2 mx - mx + 1/2m² = 0
⇒x(x - 1/2m) - m(x - 1/2m) = 0
⇒(x - 1/2m)(x - m) = 0
So the solutions are
⇒x = 1/2 m = 1/2(a + b)
and
⇒x = m = a+b
Anonymous:
hope it helps
Similar questions