Math, asked by Anonymous, 1 month ago

Solve the following quadratic equation:
{x}^{2}  + x +  \frac{1}{ \sqrt{2} }  = 0

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} + x + \dfrac{1}{ \sqrt{2} } = 0

can be rewritten as

\rm :\longmapsto\: \sqrt{2} {x}^{2} +  \sqrt{2}x + 1 = 0

On comparing with ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a =  \sqrt{2}}

\red{\rm :\longmapsto\:b =  \sqrt{2}}

\red{\rm :\longmapsto\:c =  1}

So, Let we first evaluate the Discriminant, D which is given by D = b² - 4ac

So, on substituting the values, we get

\rm :\longmapsto\:D =  {( \sqrt{2} )}^{2}  - 4 \times  \sqrt{2}  \times 1

\rm :\longmapsto\:D =  2  - 4\sqrt{2}

Since, D < 0, it means equation have unreal or imaginary roots, which is evaluated as

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{D} }{2a}

\rm :\longmapsto\:x = \dfrac{ -  \sqrt{2}  \:  \pm \:  \sqrt{2 - 4 \sqrt{2} } }{2 \sqrt{2} }

\rm :\longmapsto\:x = \dfrac{ -  \sqrt{2}  \:  \pm \:  \sqrt{ (\sqrt{2}) (\sqrt{2})   - 4 \sqrt{2} } }{2 \sqrt{2} }

\rm :\longmapsto\:x = \dfrac{ -  \sqrt{2}  \:  \pm \:   i\sqrt{2} \sqrt{2 \sqrt{2}  - 1} }{2 \sqrt{2} }

\rm :\longmapsto\:x = \dfrac{ -  1\:  \pm \:   i \sqrt{2 \sqrt{2}  - 1} }{2}

\bf\implies \:\boxed{\tt{ \:x = \dfrac{ -  1\:  \pm \:   i \sqrt{2 \sqrt{2}  - 1} }{2}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by Natsukαshii
3

Answer:

Hope the picture helps you ammu akka.

Attachments:
Similar questions