solve the
following quadratic equation x : root 3x square -2 root x - 2 root 3=0
Answers
Answered by
0
Answer:
x= root 6 and -root2/root3
Step-by-step explanation:
\begin{gathered} \sqrt{3}x {}^{2} - 2 \sqrt{2}x - 2 \sqrt{3} = 0 \\ = > \sqrt{3}x {}^{2} - 3 \sqrt{2}x + \sqrt{2}x - 2 \sqrt{3} = 0 \\ = > \sqrt{3}x(x - \sqrt{6}) + \sqrt{2}(x - \sqrt{6}) = 0 \\ = > (x - \sqrt{6})( \sqrt{3}x + \sqrt{2}) = 0 \end{gathered}
3
x
2
−2
2
x−2
3
=0
=>
3
x
2
−3
2
x+
2
x−2
3
=0
=>
3
x(x−
6
)+
2
(x−
6
)=0
=>(x−
6
)(
3
x+
2
)=0
Similar questions