Math, asked by mohdalishamsi8461, 10 months ago

Solve the following quadratic equations by factorization:
(1/x-1)-(1/x-5)=6/7,x≠1,-5

Answers

Answered by saurabhgraveiens
1

\alpha= \frac{6+\sqrt{123} }{3}   and   \beta = \frac{6-\sqrt{123} }{3}

Step-by-step explanation:

\frac{1}{X-1}-\frac{1}{X-5}=\frac{6}{7}

\frac{(X-5)-(X-1)}{(X-1)(X-5)}=\frac{6}{7}

\frac{X-5-X+1}{X^{2}-5X-X+5}=\frac{6}{7}

\frac{-4}{X^2-6X+5}=\frac{6}{7}

6x^2-36x+30=-28

6x^2-36+58=0

2(3x^2-18x-29)=0

3x^2-18x-29=0

by using quadratic formula

a = 3,  b = -12 and  c = -29    

where  D=b^2-4ac

D= (-12)^2-4\times3\times-29

D= 492

\alpha = \frac{-b+\sqrt{D} }{2a}       and      \beta = \frac{-b-\sqrt{D} }{2a}

\alpha= \frac{12+\sqrt{492} }{2\times3}      and      \beta = \frac{-12-\sqrt{492} }{2\times3}  

\alpha= \frac{6+\sqrt{123} }{3}       and      \beta = \frac{6-\sqrt{123} }{3}

Similar questions