Math, asked by BrainlyHelper, 1 year ago

Solve the following quadratic equations by factorization: \frac{x+3}{x-2}-\frac{1-x}{x} =\frac{17}{4}

Answers

Answered by nikitasingh79
18

SOLUTION :  

Given :  (x + 3) / (x − 2) -  (1 − x) / (x ) = 17/4

[x(x + 3) -  (x − 2)(1 - x )] /[(x − 2)(x)] = 17/4

[x² + 3x - (x - x² -2 + 2x)] / x² - 2x = 17/4

[x² + 3x - x + x² + 2 -  2x)] / x² - 2x = 17/4

[x² + x² + 3x - x -  2x + 2 ] / x² - 2x = 17/4

[2x² + 2] / x² - 2x = 17/4

4[2x² + 2]  = 17(x² - 2x)

8x² + 8 = 17x² - 34x

8x² - 17x² + 34x  + 8 = 0

-9x² + 34x  + 8 = 0

9x² - 34x  - 8 = 0  [ multiplying by (-1)]

9x² - 34x  - 8 = 0

9x² - 36x + 2x - 8 = 0

9x ( x - 4) + 2(x - 4) = 0

(9x + 2)(x - 4) = 0

9x + 2 = 0 or  x - 4 = 0

9x = -2  or  x = 4

x = -2/9  or  x = 4

Hence, the roots of the quadratic equation (x + 3) / (x − 2) -  (1 − x) / (x ) = 17/4  are  -2/9  &  4.

★★ METHOD TO FIND SOLUTION OF a quadratic equation by FACTORIZATION METHOD :  

We first write the given quadratic polynomial as product of two linear factors by splitting the middle term and then equate each factor to zero to get desired roots of given quadratic equation.

HOPE THIS ANSWER WILL HELP YOU….


ShuchiRecites: Perfect answer di!
Answered by ShuchiRecites
15
\Longrightarrow{\boxed{\bold{Answer:\frac{-2}{9}\:and\:4}}}

\textbf{\underline{Step-by-step explanation :- }}

 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = \frac{17}{4} \\ \\ Taking\:LCM\:we\:get \\ \\\frac{(x + 3)x - (x - 2)(1 - x)}{(x - 2)x} = \frac{17}{4} \\ \\ \frac{ {x}^{2} + 3x - x + {x}^{2} + 2 - 2x}{ {x}^{2} - 2x} = \frac{17}{4} \\ \\ \frac{2 {x}^{2} + 2}{ {x}^{2} - 2x } = \frac{17}{4} \\ \\4( 2 {x}^{2} + 2) = 17( {x}^{2} - 2x) \\ \\ 8 {x}^{2} + 8 = 17 {x}^{2} - 34x \\ \\ 0 = 9 {x}^{2} - 34x -8 \\ \\ 0 = 9 {x}^{2} - 36x + 2x - 8 \\ \\ 0 = 9x(x - 4) + 2(x - 4) \\ \\ 0 = (9x + 2)(x - 4)

\textsf{\underline{\red{Each getting 0 and we get,}}}

( 9x + 2 ) = 0 and ( x - 4 ) = 0

\bold{x = \frac{-2}{9}\:and\:4}

Anonymous: nice
ShuchiRecites: Thanka
Similar questions