Math, asked by chandavedic, 5 days ago

Solve the following quadratic

 {x}^{2}  + ( \frac{c}{c + d}  +  \frac{c + d}{d} )x + 1 =

Answers

Answered by mathdude500
12

Given Question :-

Solve the following quadratic equation :-

\rm \: {x}^{2} + \bigg(\dfrac{c}{c + d}  + \dfrac{c + d}{c}  \bigg)x + 1 = 0 \\

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \:  {x}^{2} + \bigg(\dfrac{c}{c + d}  + \dfrac{c + d}{c}  \bigg)x + 1 = 0 \\

can be rewritten as

\rm \:  {x}^{2} + \bigg(\dfrac{c}{c + d}  + \dfrac{c + d}{c}  \bigg)x +\dfrac{c}{c + d} \times \dfrac{c + d}{c}  = 0 \\

can be further rewritten as

\rm \:  {x}^{2} + \dfrac{c}{c + d} x + \dfrac{c + d}{c}x +\dfrac{c}{c + d} \times \dfrac{c + d}{c}  = 0 \\

\rm \: x\bigg(x + \dfrac{c}{c + d} \bigg)  +  \frac{c + d}{c}\bigg(x + \dfrac{c}{c + d} \bigg)  = 0 \:  \\

\rm \: \bigg(x + \dfrac{c}{c + d} \bigg) \bigg(x + \dfrac{c + d}{c} \bigg)  = 0 \:  \\

So,

\rm\implies \:x  \: =  \:  -  \: \dfrac{c}{c + d} \:  \: or \:  \:  \: x \:  = \:   -  \:  \dfrac{c + d}{c} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick :-

The quadratic equation of the form

\rm \:  {x}^{2} + \bigg(a +  \frac{1}{a} \bigg)y + 1 = 0 \:  \\

always have the solution

 \: \boxed{\sf{  \: \: x \:  =  \:  -  \: a \:  \:  \: or \:  \:  \: x \:  =  \:  -  \:  \frac{1}{a}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions