Math, asked by ansarisamiya91630, 9 months ago

solve the following simultaneous equations and find the value of x:150x+100y=10,260x+40y=10​

Answers

Answered by Missaayu
130

Answer:

  • x = 0.48
  • y = -0.62

Step-by-step explanation:

Given:

  • Equations : 150 x + 100 y = 10 and 260 x + 40 y = 10

To Find:

  • Value of x and y.

Formula/Method used:

  • Substitution method.

Now, we will solve this equation by substitution method,

\sf{\implies 150 x + 100 y = 10\;\;......(1)}

\sf{\implies 150x=10-100y}

\sf{\implies x=\dfrac{10-100y}{150}}

Now, put the value of 'x' in 2nd equation,

\sf{\implies 260x+40y=10\;\;......(2)}

\sf{\implies 260\Bigg[\dfrac{10-100y}{150}\Bigg]+40y=10}

\sf{\implies \dfrac{2600-26000y}{150}+40y=10}

\sf{\implies \dfrac{2600-26000y+6000y}{150}=100}

\sf{\implies 2600-20000y=15000}

\sf{\implies -20000y=15000-2600}

\sf{\implies -20000y=12400}

\sf{\implies y=-\dfrac{12400}{20000}}

{\boxed{\boxed{\bf{\implies y=-0.62}}}}

Now, put the value of 'y' in equation (1),

\sf{\implies 150 x + 100 y = 10\;\;......(1)}

\sf{\implies 150x+100(-0.62)=10}

\sf{\implies 150x-62=10}

\sf{\implies 150x=72}

\sf{\implies x=\dfrac{72}{150}}

{\boxed{\boxed{\bf{\implies x=0.48}}}}

Answered by challapushpalatha0
2

Answer:

answer is in pic

Step-by-step explanation:

mark as a brainilist

Attachments:
Similar questions