Chemistry, asked by thirumurugan14081999, 18 hours ago

Solve the following simultaneous equations through inverse matrix method:

z+y=z=1 2x-2y+z=6 2+3=0​

Answers

Answered by suhani246868
0

Explanation:

Given

2x−y+3z=9 ………..(1)

x+y+z=6 …………..(2)

x−y+z=2 …………….(3)

using matrix inversion method

AX=B

2

1

1

−1

1

−1

3

1

1

x

y

z

=

9

6

2

and X=A

−1

B where A

−1

=

∣A∣

adj(A)

Now adjA=

2

0

−2

−2

−1

−1

−4

1

3

∣A∣=2(1+1)−1(1−1)+3(−1−1)

∣A∣=4−6

∣A∣=−2.

Now A

−1

=

2

−1

2

0

−2

−2

−1

−1

−4

1

3

Now X=A

−1

B

x

y

z

=

2

−1

2

0

−2

−2

−1

−1

−4

1

3

9

6

2

x

y

z

=

2

−1

18−12−8

0−6+2

−18−6+6

=

2

−1

−2

−4

−18

x

y

z

=

1

2

9

Hence [x=1,y=2 & z=9].

Answered by mentalgaming2008
0

Given

2x−y+3z=9 ………..(1)

x+y+z=6 …………..(2)

x−y+z=2 …………….(3)

using matrix inversion method

AX=B

2

1

1

−1

1

−1

3

1

1

x

y

z

=

9

6

2

and X=A

−1

B where A

−1

=

∣A∣

adj(A)

Now adjA=

2

0

−2

−2

−1

−1

−4

1

3

∣A∣=2(1+1)−1(1−1)+3(−1−1)

∣A∣=4−6

∣A∣=−2.

Now A

−1

=

2

−1

2

0

−2

−2

−1

−1

−4

1

3

Now X=A

−1

B

x

y

z

=

2

−1

2

0

−2

−2

−1

−1

−4

1

3

9

6

2

x

y

z

=

2

−1

18−12−8

0−6+2

−18−6+6

=

2

−1

−2

−4

−18

x

y

z

=

1

2

9

Hence [x=1,y=2 & z=9].

Attachments:
Similar questions