solve the following system of equation x+y=a+b
ax-by= a^2 +b^2
Answers
Answered by
5
The answer is given below :
The given equations are
x + y = a + b .....(i)
ax - by = a² + b² .....(ii)
Now, multiplying (i) by a and (ii) by 1, we get
ax + ay = a(a + b)
⇒ ax + ay = a² + ab .....(iii)
ax - by = a² + b² .....(ii)
Now, subtracting (ii) from (iii), we get
ax + ay - ax + by = a² + ab - a² - b²
⇒ ay + by = ab - b²
⇒ (a + b)y = b(a - b)
⇒ y = b(a - b)/(a + b)
Now, putting y = b(a - b)/(a + b) in (i), we get
x + b(a - b)/(a + b) = a + b
⇒ x = (a + b) - b(a - b)/(a + b)
⇒ x = [(a + b)² - b(a - b)]/(a + b)
⇒ x = (a² + 2ab + b² - ab + b²)/(a + b)
⇒ x = (a² + ab + 2b²)/(a + b)
Therefore, the required solution be
x = (a² + ab + 2b²)/(a + b),
y = b(a - b)/(a + b)
Thank you for your question.
The given equations are
x + y = a + b .....(i)
ax - by = a² + b² .....(ii)
Now, multiplying (i) by a and (ii) by 1, we get
ax + ay = a(a + b)
⇒ ax + ay = a² + ab .....(iii)
ax - by = a² + b² .....(ii)
Now, subtracting (ii) from (iii), we get
ax + ay - ax + by = a² + ab - a² - b²
⇒ ay + by = ab - b²
⇒ (a + b)y = b(a - b)
⇒ y = b(a - b)/(a + b)
Now, putting y = b(a - b)/(a + b) in (i), we get
x + b(a - b)/(a + b) = a + b
⇒ x = (a + b) - b(a - b)/(a + b)
⇒ x = [(a + b)² - b(a - b)]/(a + b)
⇒ x = (a² + 2ab + b² - ab + b²)/(a + b)
⇒ x = (a² + ab + 2b²)/(a + b)
Therefore, the required solution be
x = (a² + ab + 2b²)/(a + b),
y = b(a - b)/(a + b)
Thank you for your question.
Similar questions
Math,
8 months ago
Computer Science,
8 months ago
Chemistry,
8 months ago
Math,
1 year ago
English,
1 year ago